Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Nat Immunol ; 20(12): 1631-1643, 2019 12.
Article in English | MEDLINE | ID: mdl-31740799

ABSTRACT

Osteoclasts have a unique bone-destroying capacity, playing key roles in steady-state bone remodeling and arthritic bone erosion. Whether the osteoclasts in these different tissue settings arise from the same precursor states of monocytoid cells is presently unknown. Here, we show that osteoclasts in pannus originate exclusively from circulating bone marrow-derived cells and not from locally resident macrophages. We identify murine CX3CR1hiLy6CintF4/80+I-A+/I-E+ macrophages (termed here arthritis-associated osteoclastogenic macrophages (AtoMs)) as the osteoclast precursor-containing population in the inflamed synovium, comprising a subset distinct from conventional osteoclast precursors in homeostatic bone remodeling. Tamoxifen-inducible Foxm1 deletion suppressed the capacity of AtoMs to differentiate into osteoclasts in vitro and in vivo. Furthermore, synovial samples from human patients with rheumatoid arthritis contained CX3CR1+HLA-DRhiCD11c+CD80-CD86+ cells that corresponded to mouse AtoMs, and human osteoclastogenesis was inhibited by the FoxM1 inhibitor thiostrepton, constituting a potential target for rheumatoid arthritis treatment.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Bone Marrow Cells/physiology , Forkhead Box Protein M1/metabolism , Macrophages/physiology , Osteoclasts/physiology , Animals , CX3C Chemokine Receptor 1/metabolism , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Forkhead Box Protein M1/antagonists & inhibitors , Forkhead Box Protein M1/genetics , Humans , Male , Mice , Mice, Inbred DBA , Mice, Transgenic , Osteogenesis , Thiostrepton/pharmacology
2.
Physiol Rev ; 99(1): 513-554, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30427276

ABSTRACT

The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?


Subject(s)
Cell Differentiation/physiology , Embryonic Development/physiology , Gene Expression Regulation, Developmental/genetics , Lung/cytology , Morphogenesis/physiology , Animals , Cell Proliferation/physiology , Embryonic Development/genetics , Humans , Lung/metabolism , Morphogenesis/genetics
3.
Article in English | MEDLINE | ID: mdl-38507610

ABSTRACT

RATIONALE: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice missing critical morphogenetic genes. While epithelial cell lineages were efficiently generated from ESC, other cell types were mosaic. A complete contribution of donor ESC to lung tissue has never been achieved. The mouse lung has never been generated in a rat. OBJECTIVE: To generate the mouse lung in a rat. METHODS: CRISPR/Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat 1-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESC into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESC to the lung tissue was examined by immunostaining, flow cytometry and single-cell RNA sequencing. MEASUREMENTS AND MAIN RESULTS: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR/Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESC restored pulmonary and thyroid structures in mouse-rat chimeras leading to a near 99% contribution of ESC to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. CONCLUSIONS: A combination of CRISPR/Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors".

4.
Article in English | MEDLINE | ID: mdl-38772902

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific sub-types of circulating and resident macrophages mediating the developmental and regenerative functions in the lung. Several studies reported the successful application of macrophage therapy in accelerating regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue, but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.

5.
Am J Respir Crit Care Med ; 208(6): 709-725, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37463497

ABSTRACT

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal developmental disorder of lung morphogenesis caused by insufficiency of FOXF1 (forkhead box F1) transcription factor function. The cellular and transcriptional mechanisms by which FOXF1 deficiency disrupts human lung formation are unknown. Objectives: To identify cell types, gene networks, and cell-cell interactions underlying the pathogenesis of ACDMPV. Methods: We used single-nucleus RNA and assay for transposase-accessible chromatin sequencing, immunofluorescence confocal microscopy, and RNA in situ hybridization to identify cell types and molecular networks influenced by FOXF1 in ACDMPV lungs. Measurements and Main Results: Pathogenic single-nucleotide variants and copy-number variant deletions involving the FOXF1 gene locus in all subjects with ACDMPV (n = 6) were accompanied by marked changes in lung structure, including deficient alveolar development and a paucity of pulmonary microvasculature. Single-nucleus RNA and assay for transposase-accessible chromatin sequencing identified alterations in cell number and gene expression in endothelial cells (ECs), pericytes, fibroblasts, and epithelial cells in ACDMPV lungs. Distinct cell-autonomous roles for FOXF1 in capillary ECs and pericytes were identified. Pathogenic variants involving the FOXF1 gene locus disrupt gene expression in EC progenitors, inhibiting the differentiation or survival of capillary 2 ECs and cell-cell interactions necessary for both pulmonary vasculogenesis and alveolar type 1 cell differentiation. Loss of the pulmonary microvasculature was associated with increased VEGFA (vascular endothelial growth factor A) signaling and marked expansion of systemic bronchial ECs expressing COL15A1 (collagen type XV α 1 chain). Conclusions: Distinct FOXF1 gene regulatory networks were identified in subsets of pulmonary endothelial and fibroblast progenitors, providing both cellular and molecular targets for the development of therapies for ACDMPV and other diffuse lung diseases of infancy.


Subject(s)
Persistent Fetal Circulation Syndrome , Infant, Newborn , Humans , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Gene Regulatory Networks/genetics , Vascular Endothelial Growth Factor A/genetics , Endothelial Cells/pathology , Multiomics , Lung/pathology , RNA , Forkhead Transcription Factors/genetics
6.
Am J Respir Crit Care Med ; 207(8): 1042-1054, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36480964

ABSTRACT

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is linked to heterozygous mutations in the FOXF1 (Forkhead Box F1) gene, a key transcriptional regulator of pulmonary vascular development. There are no effective treatments for ACDMPV other than lung transplant, and new pharmacological agents activating FOXF1 signaling are urgently needed. Objectives: Identify-small molecule compounds that stimulate FOXF1 signaling. Methods: We used mass spectrometry, immunoprecipitation, and the in vitro ubiquitination assay to identify TanFe (transcellular activator of nuclear FOXF1 expression), a small-molecule compound from the nitrile group, which stabilizes the FOXF1 protein in the cell. The efficacy of TanFe was tested in mouse models of ACDMPV and acute lung injury and in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV. Measurements and Main Results: We identified HECTD1 as an E3 ubiquitin ligase involved in ubiquitination and degradation of the FOXF1 protein. The TanFe compound disrupted FOXF1-HECTD1 protein-protein interactions and decreased ubiquitination of the FOXF1 protein in pulmonary endothelial cells in vitro. TanFe increased protein concentrations of FOXF1 and its target genes Flk1, Flt1, and Cdh5 in LPS-injured mouse lungs, decreasing endothelial permeability and inhibiting lung inflammation. Treatment of pregnant mice with TanFe increased FOXF1 protein concentrations in lungs of Foxf1+/- embryos, stimulated neonatal lung angiogenesis, and completely prevented the mortality of Foxf1+/- mice after birth. TanFe increased angiogenesis in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV with FOXF1 deletion. Conclusions: TanFe is a novel activator of FOXF1, providing a new therapeutic candidate for treatment of ACDMPV and other neonatal pulmonary vascular diseases.


Subject(s)
Persistent Fetal Circulation Syndrome , Infant, Newborn , Humans , Animals , Mice , Persistent Fetal Circulation Syndrome/genetics , Endothelial Cells , Lung/metabolism , Forkhead Transcription Factors/genetics
7.
Am J Respir Cell Mol Biol ; 68(4): 430-443, 2023 04.
Article in English | MEDLINE | ID: mdl-36542853

ABSTRACT

Mutations in the FOXF1 (forkhead box F1) gene, encoding the mesenchymal FOX (forkhead box) transcription factor, are linked to alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with the loss of alveolar capillaries and lung hypoplasia. Although proangiogenic functions of FOXF1 have been extensively studied, the role of FOXF1 in mesenchymal-epithelial signaling during lung development remains uncharacterized. Herein, we used murine lung organoids to demonstrate that the S52F FOXF1 mutation (found in patients with ACDMPV) stimulates canonical WNT/ß-catenin signaling in type 2 alveolar epithelial cells (AEC2s), leading to increased proliferation of AEC2s and decreased differentiation of AEC2s into type 1 alveolar epithelial cells (AEC1s). Alveolar organoids containing Foxf1WT/S52F lung fibroblasts and wild-type epithelial cells grew faster on Matrigel and exhibited AEC2 hyperplasia. AEC2 hyperplasia and loss of AEC1s were found in the lungs of Foxf1WT/S52F embryos, a mouse model of ACDMPV. Activation of canonical WNT/ß-catenin signaling in AEC2s of lung organoids and Foxf1WT/S52F mice was associated with decreased expression of noncanonical WNT5A (Wnt family member 5A) ligand in lung fibroblasts. Mechanistically, FOXF1 directly activates the Wnt5a gene transcription through an evolutionarily conserved +6320/+6326 region located in the first intron of the Wnt5a gene. Site-directed mutagenesis of the +6320/+6326 region prevented the transcriptional activation of the Wnt5a enhancer by FOXF1. Treatment with exogenous WNT5A ligand inhibited the effects of the S52F FOXF1 mutation on canonical WNT/ß-catenin signaling in alveolar organoids, preventing aberrant AEC2 expansion and restoring differentiation of AEC1s. Activation of either FOXF1 or WNT5A may provide an attractive strategy to improve lung function in patients with ACDMPV.


Subject(s)
Forkhead Transcription Factors , Persistent Fetal Circulation Syndrome , Wnt-5a Protein , Animals , Humans , Mice , beta Catenin/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hyperplasia , Ligands , Morphogenesis , Transcriptional Activation , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Wnt Signaling Pathway
8.
PLoS Genet ; 16(4): e1008692, 2020 04.
Article in English | MEDLINE | ID: mdl-32271749

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.


Subject(s)
Forkhead Box Protein M1/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Pulmonary Fibrosis/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adoptive Transfer/methods , Animals , Cells, Cultured , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Forkhead Box Protein M1/genetics , Humans , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Pulmonary Fibrosis/therapy
9.
Semin Cell Dev Biol ; 100: 101-108, 2020 04.
Article in English | MEDLINE | ID: mdl-31669132

ABSTRACT

The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.


Subject(s)
Bioengineering , Lung Injury , Lung/cytology , Lung/metabolism , Regeneration , Animals , Humans , Lung Injury/pathology
10.
Circulation ; 144(7): 539-555, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34111939

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Subject(s)
Gene Transfer Techniques , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Nanoparticles , Persistent Fetal Circulation Syndrome/complications , Pulmonary Alveoli/abnormalities , STAT3 Transcription Factor/genetics , Airway Remodeling/genetics , Animals , Biomarkers , Disease Models, Animal , Disease Susceptibility , Drug Carriers , Drug Delivery Systems , Echocardiography , Fibrosis , Forkhead Transcription Factors/deficiency , Genetic Therapy , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/diagnosis , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Mice , Mice, Transgenic , Microvascular Density/genetics , Myofibroblasts/metabolism , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , STAT3 Transcription Factor/administration & dosage , Theranostic Nanomedicine/methods , Treatment Outcome , Vascular Remodeling/genetics
11.
Am J Respir Crit Care Med ; 204(3): 326-338, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33705684

ABSTRACT

Rationale: Although pulmonary endothelial progenitor cells (EPCs) hold promise for cell-based therapies for neonatal pulmonary disorders, whether EPCs can be derived from pluripotent embryonic stem cells (ESCs) or induced pluripotent stem cells remains unknown.Objectives: To investigate the heterogeneity of pulmonary EPCs and derive functional EPCs from pluripotent ESCs.Methods: Single-cell RNA sequencing of neonatal human and mouse lung was used to identify the heterogeneity of pulmonary EPCs. CRISPR/Cas9 gene editing was used to genetically label and purify mouse pulmonary EPCs. Functional properties of the EPCs were assessed after cell transplantation into neonatal mice with S52F Foxf1 mutation, a mouse model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interspecies mouse-rat chimeras were produced through blastocyst complementation to generate EPCs from pluripotent ESCs for cell therapy in ACDMPV mice.Measurements and Main Results: We identified a unique population of EPCs, FOXF1+cKIT+ EPCs, as a subset of recently described general capillary cells (gCAPs) expressing SMAD7, ZBTB20, NFIA, and DLL4 but lacking mature arterial, venous, and lymphatic markers. FOXF1+cKIT+ gCAPs are reduced in ACDMPV, and their transcriptomic signature is conserved in mouse and human lungs. After cell transplantation into the neonatal circulation of ACDMPV mice, FOXF1+cKIT+ gCAPs engraft into the pulmonary vasculature, stimulate angiogenesis, improve oxygenation, and prevent alveolar simplification. FOXF1+cKIT+ gCAPs, produced from ESCs in interspecies chimeras, are fully competent to stimulate neonatal lung angiogenesis and alveolarization in ACDMPV mice.Conclusions: Cell-based therapy using donor or ESC/induced pluripotent stem cell-derived FOXF1+cKIT+ endothelial progenitors may be considered for treatment of human ACDMPV.


Subject(s)
Embryonic Stem Cells/cytology , Endothelial Progenitor Cells/cytology , Induced Pluripotent Stem Cells/cytology , Persistent Fetal Circulation Syndrome/therapy , Stem Cell Transplantation , Animals , Animals, Newborn , CRISPR-Cas Systems , Chimera , Disease Models, Animal , Embryonic Stem Cells/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/transplantation , Forkhead Transcription Factors/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Infant, Newborn , Mice , Persistent Fetal Circulation Syndrome/metabolism , Persistent Fetal Circulation Syndrome/pathology , Pluripotent Stem Cells , RNA-Seq , Rats , Single-Cell Analysis
12.
Am J Respir Crit Care Med ; 203(4): 471-483, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32877203

ABSTRACT

Rationale: The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.Objectives: To determine whether ESCs are capable of generating lung tissue in Nkx2-1-/- mouse embryos with lung agenesis.Methods: Blastocyst complementation was used to produce chimeras from normal mouse ESCs and Nkx2-1-/- embryos, which lack pulmonary tissues. Nkx2-1-/- chimeras were examined using immunostaining, transmission electronic microscopy, fluorescence-activated cell sorter analysis, and single-cell RNA sequencing.Measurements and Main Results: Although peripheral pulmonary and thyroid tissues are entirely lacking in Nkx2-1 gene-deleted embryos, pulmonary and thyroid structures in Nkx2-1-/- chimeras were restored after ESC complementation. Respiratory epithelial cell lineages in restored lungs of Nkx2-1-/- chimeras were derived almost entirely from ESCs, whereas endothelial, immune, and stromal cells were mosaic. ESC-derived cells from multiple respiratory cell lineages were highly differentiated and indistinguishable from endogenous cells based on morphology, ultrastructure, gene expression signatures, and cell surface proteins used to identify cell types by fluorescence-activated cell sorter.Conclusions: Lung and thyroid tissues were generated in vivo from ESCs by blastocyst complementation. Nkx2-1-/- chimeras can be used as "bioreactors" for in vivo differentiation and functional studies of ESC-derived progenitor cells.


Subject(s)
Blastocyst/physiology , Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Lung Diseases/therapy , Lung/growth & development , Thyroid Gland/growth & development , Tissue Engineering/methods , Animals , Cell Differentiation/genetics , Humans , Mice , Models, Animal
13.
Dev Dyn ; 250(7): 1001-1020, 2021 07.
Article in English | MEDLINE | ID: mdl-33428297

ABSTRACT

BACKGROUND: Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos. RESULTS: While Nkx2-1-/- mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1-/- mice. Complementation of Nkx2-1-/- embryos with NKX2-1-sufficient embryonic stem cells (ESCs) enabled the formation of all tissue components of the peripheral lung but did not enhance ESC colonization of the most proximal regions of the airways. In chimeric mice, a precise boundary was formed between NKX2-1-deficient basal cells co-expressing SOX2 and SOX9 in large airways and ESC-derived NKX2-1+ SOX9+ epithelial cells of smaller airways. NKX2-1-sufficient ESCs were able to selectively complement peripheral, rather than most proximal regions of the airways. ESC complementation did not prevent ectopic expression of SOX9 but restored ß-catenin signaling in Nkx2-1-/- basal cells of large airways. CONCLUSIONS: NKX2-1 and ß-catenin function in an epithelial cell-autonomous manner to establish the proximal-peripheral boundary along developing airways.


Subject(s)
Blastocyst/physiology , Organogenesis/genetics , Respiratory Mucosa/embryology , Thyroid Nuclear Factor 1/physiology , Animals , Cell Differentiation/genetics , Embryo, Mammalian , Embryonic Development/genetics , Female , Genetic Complementation Test , Lung/embryology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity/genetics , Pregnancy , Trachea/embryology
14.
Am J Respir Cell Mol Biol ; 65(5): 473-488, 2021 11.
Article in English | MEDLINE | ID: mdl-34293272

ABSTRACT

Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and antiinflammatory drugs have improved clinical management of preterm infants, those who suffer with severe vascular complications still lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of infants with ACDMPV. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell-selective markers that are linked to progenitor properties needed to develop cell-based therapies. Focusing on the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, and key transcriptional regulators and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells in vitro holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.


Subject(s)
Bronchopulmonary Dysplasia/pathology , Endothelial Progenitor Cells/physiology , Lung Diseases/therapy , Persistent Fetal Circulation Syndrome/pathology , Animals , Bronchopulmonary Dysplasia/therapy , Cell Differentiation , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/transplantation , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells , Infant, Premature , Lung/blood supply , Lung/embryology , Lung/metabolism , Lung Diseases/pathology , Persistent Fetal Circulation Syndrome/therapy
15.
Am J Respir Cell Mol Biol ; 64(3): 292-307, 2021 03.
Article in English | MEDLINE | ID: mdl-33095997

ABSTRACT

Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.


Subject(s)
Drug Delivery Systems/methods , Lung Diseases/drug therapy , Nanoparticles/therapeutic use , Animals , Biomedical Technology , Clinical Trials as Topic , Genetic Therapy , Humans
16.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32240596

ABSTRACT

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Drug Delivery Systems , Forkhead Box Protein M1/administration & dosage , Forkhead Transcription Factors/administration & dosage , Hyperoxia/drug therapy , Nanoparticles , Pulmonary Alveoli/drug effects , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/therapeutic use , Animals , Animals, Newborn , Blotting, Western , Female , Flow Cytometry , Forkhead Box Protein M1/pharmacology , Forkhead Box Protein M1/therapeutic use , Forkhead Transcription Factors/pharmacology , Forkhead Transcription Factors/therapeutic use , Hyperoxia/pathology , Hyperoxia/physiopathology , Injections, Intravenous , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
17.
Am J Respir Crit Care Med ; 200(9): 1164-1176, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31233341

ABSTRACT

Rationale: Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT+ endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown.Objectives: To determine whether c-KIT+ EC progenitors stimulate alveologenesis in the neonatal lung.Methods: We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT+ EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT+ EC progenitors in the neonatal lung.Measurements and Main Results: Pulmonary c-KIT+ EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT+ ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT+ EC progenitors. Haploinsufficiency or endothelial-specific deletion of Foxf1 in mice increased apoptosis and decreased proliferation of c-KIT+ ECs. Inactivation of either Foxf1 or c-Kit caused alveolar simplification. Adoptive transfer of c-KIT+ ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia.Conclusions: Cell therapy involving c-KIT+ EC progenitors can be beneficial for the treatment of BPD.


Subject(s)
Endothelial Progenitor Cells/physiology , Forkhead Transcription Factors/physiology , Lung/growth & development , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/physiology , Animals , Humans , Infant, Newborn , Mice , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Tissue Culture Techniques
18.
Am J Respir Crit Care Med ; 200(8): 1045-1056, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31199666

ABSTRACT

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.


Subject(s)
Forkhead Transcription Factors/genetics , Gene Expression Regulation , Mutation , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/physiopathology , Pulmonary Alveoli/abnormalities , Signal Transduction/genetics , Animals , Humans , Mice , Models, Animal , Pulmonary Alveoli/physiopathology
19.
PLoS Genet ; 13(12): e1007097, 2017 12.
Article in English | MEDLINE | ID: mdl-29267283

ABSTRACT

Lung cancer remains one of the most prominent public health challenges, accounting for the highest incidence and mortality among all human cancers. While pulmonary invasive mucinous adenocarcinoma (PIMA) is one of the most aggressive types of non-small cell lung cancer, transcriptional drivers of PIMA remain poorly understood. In the present study, we found that Forkhead box M1 transcription factor (FOXM1) is highly expressed in human PIMAs and associated with increased extracellular mucin deposition and the loss of NKX2.1. To examine consequences of FOXM1 expression in tumor cells in vivo, we employed an inducible, transgenic mouse model to express an activated FOXM1 transcript in urethane-induced benign lung adenomas. FOXM1 accelerated tumor growth, induced progression from benign adenomas to invasive, metastatic adenocarcinomas, and induced SOX2, a marker of poorly differentiated tumor cells. Adenocarcinomas in FOXM1 transgenic mice expressed increased MUC5B and MUC5AC, and reduced NKX2.1, which are characteristics of mucinous adenocarcinomas. Expression of FOXM1 in KrasG12D transgenic mice increased the mucinous phenotype in KrasG12D-driven lung tumors. Anterior Gradient 2 (AGR2), an oncogene critical for intracellular processing and packaging of mucins, was increased in mouse and human PIMAs and was associated with FOXM1. FOXM1 directly bound to and transcriptionally activated human AGR2 gene promoter via the -257/-247 bp region. Finally, using orthotopic xenografts we demonstrated that inhibition of either FOXM1 or AGR2 in human PIMAs inhibited mucinous characteristics, and reduced tumor growth and invasion. Altogether, FOXM1 is necessary and sufficient to induce mucinous phenotypes in lung tumor cells in vivo.


Subject(s)
Adenocarcinoma, Mucinous/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenoma/pathology , Forkhead Box Protein M1/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proteins/metabolism , A549 Cells , Adenocarcinoma/genetics , Adenocarcinoma of Lung , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/metabolism , Adenoma/genetics , Adenoma/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Disease Progression , Forkhead Box Protein M1/genetics , Heterografts , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , Mucoproteins , Oncogene Proteins , Promoter Regions, Genetic , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL