Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cancer ; 129(2): 215-225, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36397290

ABSTRACT

BACKGROUND: Fatigue is a hallmark of breast cancer and is associated with skeletal muscle deconditioning. If cancer-related fatigue occurs early during chemotherapy (CT), the development of skeletal muscle deconditioning and its effect on exercise capacity remain unclear. The aim of this study was to investigate the evolution of skeletal muscle deconditioning and exercise capacity in patients with early-stage breast cancer during CT. METHODS: Patients with breast cancer had a visit before undergoing CT, at 8 weeks, and at the end of chemotherapy (post-CT). Body composition was determined through bioelectrical impedance analysis. Knee extensor, handgrip muscle force and fatigue was quantified by performing maximal voluntary isometric contractions and exercise capacity using the 6-min walking test. Questionnaires were also administered to evaluate quality of life, cancer-related fatigue, and physical activity level. RESULTS: Among the 100 patients, reductions were found in muscle mass (-2.3%, p = .002), exercise capacity (-6.7%, p < .001), and knee extensor force (-4.9%, p < .001) post-CT, which occurred within the first 8 weeks of treatment with no further decrease thereafter. If muscle fatigue did not change, handgrip muscle force decreased post-CT only (-2.5%, p = .001), and exercise capacity continued to decrease between 8 weeks and post-CT (-4.6%, p < .001). Quality of life and cancer-related fatigue were impaired after 8 weeks (p < .001) and remained stable thereafter, whereas the physical activity level remained stable during chemotherapy. CONCLUSIONS: Similar to cancer-related fatigue, skeletal muscle deconditioning and reduced exercise capacity occurred early during breast cancer CT. Thus, it appears essential to prevent these alterations through exercise training implemented during CT.


Subject(s)
Breast Neoplasms , Hand Strength , Humans , Female , Hand Strength/physiology , Exercise Tolerance , Breast Neoplasms/drug therapy , Quality of Life , Muscle, Skeletal , Chemotherapy, Adjuvant/adverse effects
2.
Breast Cancer Res Treat ; 179(2): 371-376, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31612291

ABSTRACT

PURPOSE: We report the results of a retrospective analysis of the fulvestrant and palbociclib combination within a temporary authorization of use (TAU) program in 77 heavily pretreated patients with hormone receptor-positive (HR+), HER2-negative metastatic breast cancer. METHODS: All patients who received the fulvestrant and palbociclib combination within this TAU program were included. Toxicities were graded using the CTCAE v5 scale. RESULTS: The majority of patients (62.3%) were previously treated with the mTOR inhibitor everolimus. The median number of previous treatments for their metastatic disease was 4. With a median follow-up of 14 months, the median progression-free survival (PFS) was 7.6 months. The median PFS significantly (p < 0.0001) decreased with the number of previous treatment lines in the metastatic setting. The median PFS was 5.5 months in patients who had previously progressed on everolimus compared to 9.3 months in the everolimus non-pretreated subgroup. No significant difference in median PFS was detected in patients according to age. The median overall survival rate was not reached. The clinical benefit rate was 64%, including 4% of complete responses, 26% partial responses, and 34% stable diseases for the entire cohort. CONCLUSIONS: The fulvestrant and palbociclib combination exerts an appreciable effect on metastatic heavily pretreated patients with a tolerable toxicity profile.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Follow-Up Studies , Fulvestrant/administration & dosage , Humans , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Piperazines/administration & dosage , Prognosis , Pyridines/administration & dosage , Retreatment , Treatment Outcome , Triple Negative Breast Neoplasms/mortality
3.
J Cachexia Sarcopenia Muscle ; 15(1): 292-305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183352

ABSTRACT

BACKGROUND: Breast cancer patients are commonly treated with sequential administrations of epirubicin-cyclophosphamide (EC) and paclitaxel (TAX). The chronic effect of this treatment induces skeletal muscle alterations, but the specific effect of each chemotherapy agent is unknown. This study aimed to investigate the effect of EC or TAX administration on skeletal muscle homeostasis in breast cancer patients. METHODS: Twenty early breast cancer patients undergoing EC followed by TAX chemotherapies were included. Two groups of 10 women were established and performed vastus lateralis skeletal muscle biopsies either before the first administration (pre) of EC (50 ± 14 years) or TAX (50 ± 16 years) and 4 days later (post). Mitochondrial respiratory capacity recording, reactive oxygen species production, western blotting and histological analyses were performed. RESULTS: Decrease in muscle fibres cross-sectional area was only observed post-EC (-25%; P < 0.001), associated with a reduction in mitochondrial respiratory capacity for the complex I (CI)-linked substrate state (-32%; P = 0.001), oxidative phosphorylation (OXPHOS) by CI (-35%; P = 0.002), CI&CII (-26%; P = 0.022) and CII (-24%; P = 0.027). If H2 O2 production was unchanged post-EC, an increase was observed post-TAX for OXPHOS by CII (+25%; P = 0.022). We found a decrease in makers of mitochondrial content, as shown post-EC by a decrease in the protein levels of citrate synthase (-53%; P < 0.001) and VDAC (-39%; P < 0.001). Despite no changes in markers of mitochondrial fission, a decrease in the expression of a marker of mitochondrial inner-membrane fusion was found post-EC (OPA1; -60%; P < 0.001). We explored markers of mitophagy and found reductions post-EC in the protein levels of PINK1 (-63%; P < 0.001) and Parkin (-56%; P = 0.005), without changes post-TAX. An increasing trend in Bax protein level was found post-EC (+96%; P = 0.068) and post-TAX (+77%; P = 0.073), while the Bcl-2 level was decreased only post-EC (-52%; P = 0.007). If an increasing trend in TUNEL-positive signal was observed post-EC (+68%; P = 0.082), upregulation was highlighted post-TAX (+86%; P < 0.001), suggesting activation of the apoptosis process. CONCLUSIONS: We demonstrated that a single administration of EC induced, in only 4 days, skeletal muscle atrophy and mitochondrial alterations in breast cancer patients. These alterations were characterized by reductions in mitochondrial function and content as well as impairment of mitochondrial dynamics and an increase in apoptosis. TAX administration did not worsen these alterations as this group had already received EC during the preceding weeks. However, it resulted in an increased apoptosis, likely in response to the increased H2 O2 production.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Mitochondria/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Electron Transport Complex I/metabolism , Apoptosis
4.
Med Sci Sports Exerc ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935539

ABSTRACT

INTRODUCTION: This study investigated the magnitude and etiology of neuromuscular fatigue and muscle damage induced by eccentric cycling compared to conventional concentric cycling in patients with breast cancer. METHODS: After a gradual familiarization protocol for eccentric cycling, nine patients with early-stage breast cancer performed three cycling sessions in eccentric or concentric mode. The eccentric cycling session (ECC) was compared to concentric cycling sessions matched for power output (CONpower, 80% of concentric peak power output, 95 ± 23 W) or oxygen uptake (10 ± 2 mL.min.kg-1). Pre- to postexercise changes (30s through 10 min recovery) in knee extensor maximal voluntary contraction force (MVC), voluntary activation, and quadriceps potentiated twitch force (Qtw) were quantified to determine global, central, and peripheral fatigue, respectively. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities were measured in the plasma before and 24 h postexercise as markers of muscle damage. RESULTS: Compared to CONpower (-11 ± 9%) and (-5 ± 5%), the ECC session resulted in a greater decrease in MVC (-25 ± 12%) postexercise (P < 0.001). Voluntary activation decreased only in ECC (-9 ± 6% postexercise, P < 0.001). The decrease in Qtw was similar postexercise between ECC and CONpower (-39 ± 21% and -40 ± 16%, P > 0.99) but lower in (P < 0.001). The CONpower session resulted in twofold greater compared to the ECC and sessions (P < 0.001). No change in CK or LDH activity was reported from preexercise to 24 h postexercise. CONCLUSIONS: The ECC session induced greater neuromuscular fatigue compared to the concentric cycling sessions without generating severe muscle damage. ECC is a promising exercise modality for counteracting neuromuscular maladaptation in patients with breast cancer.

5.
J Cachexia Sarcopenia Muscle ; 13(3): 1896-1907, 2022 06.
Article in English | MEDLINE | ID: mdl-35373507

ABSTRACT

BACKGROUND: Chemotherapy is extensively used to treat breast cancer and is associated with skeletal muscle deconditioning, which is known to reduce patients' quality of life, treatment efficiency, and overall survival. To date, skeletal muscle mitochondrial alterations represent a major aspect explored in breast cancer patients; nevertheless, the cellular mechanisms remain relatively unknown. This study was dedicated to investigating overall skeletal muscle mitochondrial homeostasis in early breast cancer patients undergoing chemotherapy, including mitochondrial quantity, function, and dynamics. METHODS: Women undergoing (neo)adjuvant anthracycline-cyclophosphamide and taxane-based chemotherapy participated in this study (56 ± 12 years). Two muscle biopsies were collected from the vastus lateralis muscle before the first and after the last chemotherapy administration. Mitochondrial respiratory capacity, reactive oxygen species production, and western blotting analyses were performed. RESULTS: Among the 11 patients, we found a decrease in key markers of mitochondrial quantity, reaching -52.0% for citrate synthase protein levels (P = 0.02) and -38.2% for VDAC protein levels (P = 0.04). This mitochondrial content loss is likely explained by reduced mitochondrial biogenesis, as evidenced by a decrease in PGC-1α1 protein levels (-29.5%; P = 0.04). Mitochondrial dynamics were altered, as documented by a decrease in MFN2 protein expression (-33.4%; P = 0.01), a key marker of mitochondrial outer membrane fusion. Mitochondrial fission is a prerequisite for mitophagy activation, and no variation was found in either key markers of mitochondrial fission (Fis1 and DRP1) or mitophagy (Parkin, PINK1, and Mul1). Two contradictory hypotheses arise from these results: defective mitophagy, which probably increases the number of damaged and fragmented mitochondria, or a relative increase in mitophagy through elevated mitophagic potential (Parkin/VDAC ratio; +176.4%; P < 0.02). Despite no change in mitochondrial respiratory capacity and COX IV protein levels, we found an elevation in H2 O2 production (P < 0.05 for all substrate additions) without change in antioxidant enzymes. We investigated the apoptosis pathway and found an increase in the protein expression of the apoptosis initiation marker Bax (+72.0%; P = 0.04), without variation in the anti-apoptotic protein Bcl-2. CONCLUSIONS: This study demonstrated major mitochondrial alterations subsequent to chemotherapy in early breast cancer patients: (i) a striking reduction in mitochondrial biogenesis, (ii) altered mitochondrial dynamics and potential mitophagy defects, (iii) exacerbated H2 O2 production, and (iv) increased initiation of apoptosis. All of these alterations likely explain, at least in part, the high prevalence of skeletal muscle and cardiorespiratory deconditioning classically observed in breast cancer patients.


Subject(s)
Breast Neoplasms , Breast Neoplasms/metabolism , Female , Homeostasis , Humans , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Quality of Life , Ubiquitin-Protein Ligases/metabolism
6.
Front Oncol ; 10: 1304, 2020.
Article in English | MEDLINE | ID: mdl-32903594

ABSTRACT

Background: Cancer cachexia and exacerbated fatigue represent two hallmarks in cancer patients, negatively impacting their exercise tolerance and ultimately their quality of life. However, the characterization of patients' physical status and exercise tolerance and, most importantly, their evolution throughout cancer treatment may represent the first step in efficiently counteracting their development with prescribed and tailored exercise training. In this context, the aim of the PROTECT-01 study will be to investigate the evolution of physical status, from diagnosis to the end of first-line treatment, of patients with one of the three most common cancers (i.e., lung, breast, and colorectal). Methods: The PROTECT-01 cohort study will include 300 patients equally divided between lung, breast and colorectal cancer. Patients will perform a series of assessments at three visits throughout the treatment: (1) between the date of diagnosis and the start of treatment, (2) 8 weeks after the start of treatment, and (3) after the completion of first-line treatment or at the 6-months mark, whichever occurs first. For each of the three visits, subjective and objective fatigue, maximal voluntary force, body composition, cachexia, physical activity level, quality of life, respiratory function, overall physical performance, and exercise tolerance will be assessed. Discussion: The present study is aimed at identifying the nature and severity of maladaptation related to exercise intolerance in the three most common cancers. Therefore, our results should contribute to the delineation of the needs of each group of patients and to the determination of the most valuable exercise interventions in order to counteract these maladaptations. This descriptive and comprehensive approach is a prerequisite in order to elaborate, through future interventional research projects, tailored exercise strategies to counteract specific symptoms that are potentially cancer type-dependent and, in fine, to improve the health and quality of life of cancer patients. Moreover, our concomitant focus on fatigue and cachexia will provide insightful information about two factors that may have substantial interaction but require further investigation. Trial registration: This prospective study has been registered at ClinicalTrials.gov (NCT03956641), May, 2019.

SELECTION OF CITATIONS
SEARCH DETAIL