Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell ; 137(5): 961-71, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19490899

ABSTRACT

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.


Subject(s)
Amino Acid Substitution , Basal Ganglia/metabolism , Biological Evolution , Forkhead Transcription Factors/metabolism , Vocalization, Animal , Animals , Dendrites/metabolism , Dopamine/metabolism , Gene Expression , Heterozygote , Humans , Language , Long-Term Synaptic Depression , Mice , Neural Pathways , Neuronal Plasticity , Speech
2.
Acta Neuropathol ; 124(2): 187-97, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22730000

ABSTRACT

Aging and neurodegeneration are often accompanied by a functionally impaired ubiquitin-proteasome system (UPS). In tauopathies and polyglutamine diseases, a mutant form of ubiquitin B (UBB(+1)) accumulates in disease-specific aggregates. UBB(+1) mRNA is generated at low levels in vivo during transcription from the ubiquitin B locus by molecular misreading. The resulting mutant protein has been shown to inhibit proteasome function. To elucidate causative effects and neuropathological consequences of UBB(+1) accumulation, we used a UBB(+1) expressing transgenic mouse line that models UPS inhibition in neurons and exhibits behavioral phenotypes reminiscent of Alzheimer's disease (AD). In order to reveal affected organs and functions, young and aged UBB(+1) transgenic mice were comprehensively phenotyped for more than 240 parameters. This revealed unexpected changes in spontaneous breathing patterns and an altered response to hypoxic conditions. Our findings point to a central dysfunction of respiratory regulation in transgenic mice in comparison to wild-type littermate mice. Accordingly, UBB(+1) was strongly expressed in brainstem regions of transgenic mice controlling respiration. These regions included, e.g., the medial part of the nucleus of the tractus solitarius and the lateral subdivisions of the parabrachial nucleus. In addition, UBB(+1) was also strongly expressed in these anatomical structures of AD patients (Braak stage #6) and was not expressed in non-demented controls. We conclude that long-term UPS inhibition due to UBB(+1) expression causes central breathing dysfunction in a transgenic mouse model of AD. The UBB(+1) expression pattern in humans is consistent with the contribution of bronchopneumonia as a cause of death in AD patients.


Subject(s)
Alzheimer Disease/pathology , Brain Stem/physiopathology , Proteasome Endopeptidase Complex/genetics , Respiration , Ubiquitin/genetics , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Brain Stem/metabolism , Brain Stem/pathology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Phenotype , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
3.
J Neurosci ; 30(27): 9103-16, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20610744

ABSTRACT

Urocortin 3 (UCN3) is strongly expressed in specific nuclei of the rodent brain, at sites distinct from those expressing urocortin 1 and urocortin 2, the other endogenous ligands of corticotropin-releasing hormone receptor type 2 (CRH-R2). To determine the physiological role of UCN3, we generated UCN3-deficient mice, in which the UCN3 open reading frame was replaced by a tau-lacZ reporter gene. By means of this reporter gene, the nucleus parabrachialis and the premammillary nucleus were identified as previously unknown sites of UCN3 expression. Additionally, the introduced reporter gene enabled the visualization of axonal projections of UCN3-expressing neurons from the superior paraolivary nucleus to the inferior colliculus and from the posterodorsal part of the medial amygdala to the principal nucleus of the bed nucleus of the stria terminalis, respectively. The examination of tau-lacZ reporter gene activity throughout the brain underscored a predominant expression of UCN3 in nuclei functionally connected to the accessory olfactory system. Male and female mice were comprehensively phenotyped but none of the applied tests provided indications for a role of UCN3 in the context of hypothalamic-pituitary-adrenocortical axis regulation, anxiety- or depression-related behavior. However, inspired by the prevalent expression throughout the accessory olfactory system, we identified alterations in social discrimination abilities of male and female UCN3 knock-out mice that were also present in male CRH-R2 knock-out mice. In conclusion, our results suggest a novel role for UCN3 and CRH-R2 related to the processing of social cues and to the establishment of social memories.


Subject(s)
Discrimination, Psychological/physiology , Interpersonal Relations , Receptors, Corticotropin-Releasing Hormone/metabolism , Recognition, Psychology/physiology , Urocortins/metabolism , Acoustic Stimulation/methods , Animals , Brain/cytology , Brain/metabolism , Circadian Rhythm/physiology , Corticosterone/blood , Fear/physiology , Female , Gene Expression Regulation/genetics , Hypothalamo-Hypophyseal System/metabolism , Inhibition, Psychological , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Odorants , Olfactory Pathways/physiology , Perception/physiology , Pituitary-Adrenal System/embryology , Radioimmunoassay/methods , Receptors, Corticotropin-Releasing Hormone/deficiency , Reflex, Startle/genetics , Statistics, Nonparametric , Swimming/physiology , Urocortins/deficiency
4.
Methods Mol Biol ; 530: 463-509, 2009.
Article in English | MEDLINE | ID: mdl-19266331

ABSTRACT

With the completion of the mouse genome sequence an essential task for biomedical sciences in the twenty-first century will be the generation and functional analysis of mouse models for every gene in the mammalian genome. More than 30,000 mutations in ES cells will be engineered and thousands of mouse disease models will become available over the coming years by the collaborative effort of the International Mouse Knockout Consortium. In order to realize the full value of the mouse models proper characterization, archiving and dissemination of mouse disease models to the research community have to be performed. Phenotyping centers (mouse clinics) provide the necessary capacity, broad expertise, equipment, and infrastructure to carry out large-scale systemic first-line phenotyping. Using the example of the German Mouse Clinic (GMC) we will introduce the reader to the different aspects of the organization of a mouse clinic and present selected methods used in first-line phenotyping.


Subject(s)
Information Storage and Retrieval/methods , Phenotype , Animals , Database Management Systems , Mice
5.
Physiol Genomics ; 34(3): 243-55, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18505770

ABSTRACT

Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs.


Subject(s)
Behavior, Animal/physiology , Clinical Laboratory Techniques , International Cooperation , Animals , Laboratories , Male , Maze Learning , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Reflex, Startle , Reproducibility of Results , Rotarod Performance Test
6.
BMC Dev Biol ; 8: 118, 2008 Dec 22.
Article in English | MEDLINE | ID: mdl-19102749

ABSTRACT

BACKGROUND: In Drosophila, mutations in the gene eyes absent (eya) lead to severe defects in eye development. The functions of its mammalian orthologs Eya1-4 are only partially understood and no mouse model exists for Eya3. Therefore, we characterized the phenotype of a new Eya3 knockout mouse mutant. RESULTS: Expression analysis of Eya3 by in-situ hybridizations and beta-Gal-staining of Eya3 mutant mice revealed abundant expression of the gene throughout development, e.g. in brain, eyes, heart, somites and limbs suggesting pleiotropic effects of the mutated gene. A similar complex expression pattern was observed also in zebrafish embryos. The phenotype of young adult Eya3 mouse mutants was systematically analyzed within the German Mouse Clinic. There was no obvious defect in the eyes, ears and kidneys of Eya3 mutant mice. Homozygous mutants displayed decreased bone mineral content and shorter body length. In the lung, the tidal volume at rest was decreased, and electrocardiography showed increased JT- and PQ intervals as well as decreased QRS amplitude. Behavioral analysis of the mutants demonstrated a mild increase in exploratory behavior, but decreased locomotor activity and reduced muscle strength. Analysis of differential gene expression revealed 110 regulated genes in heart and brain. Using real-time PCR, we confirmed Nup155 being down regulated in both organs. CONCLUSION: The loss of Eya3 in the mouse has no apparent effect on eye development. The wide-spread expression of Eya3 in mouse and zebrafish embryos is in contrast to the restricted expression pattern in Xenopus embryos. The loss of Eya3 in mice leads to a broad spectrum of minor physiological changes. Among them, the mutant mice move less than the wild-type mice and, together with the effects on respiratory, muscle and heart function, the mutation might lead to more severe effects when the mice become older. Therefore, future investigations of Eya3 function should focus on aging mice.


Subject(s)
DNA-Binding Proteins/deficiency , Animals , Base Sequence , DNA/genetics , DNA-Binding Proteins/genetics , Eye/embryology , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homozygote , In Situ Hybridization , Lac Operon , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutagenesis, Insertional , Mutation , Organ Specificity , Phenotype , Pregnancy , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
7.
Front Biosci ; 13: 5810-23, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18508624

ABSTRACT

It is unclear what role vision plays in guiding mouse behaviour, since the mouse eye is of comparably low optical quality, and mice are considered to rely primarily on other senses. All C3H substrains are homozygous for the Pde6b(rd1) mutation and get blind by weaning age. To study the impact of the Pde6b(rd1) mutation on mouse behaviour and physiology, sighted C3H (C3H.Pde6b+) and normal C3H/HeH mice were phenotyped for different aspects. We confirmed retinal degeneration 1 in C3H/HeH mice, and the presence of a morphologically normal retina as well as visual ability in C3H.Pde6b+ mice. However, C3H.Pde6b+ mice showed an abnormal retinal function in the electroretinogram response, indicating that their vision was not normal as expected. C3H.Pde6b+ mice showed reduced latencies for several behaviours without any further alterations in these behaviours in comparison to C3H/HeH mice, suggesting that visual ability, although impaired, enables earlier usage of the behavioural repertoire in a novel environment, but does not lead to increased activity levels. These results emphasize the importance of comprehensive behavioural and physiological phenotyping.


Subject(s)
Behavior, Animal , Vision, Ocular/physiology , Animals , Blood Pressure , Cardiovascular Physiological Phenomena , Electrocardiography , Electroretinography , Exploratory Behavior , Fluorescein Angiography , Gene Expression Profiling , Lactates/metabolism , Mice , Mice, Inbred C3H , Motor Activity , Nystagmus, Optokinetic/physiology , Phenotype , Vision Tests
8.
Eur J Pharmacol ; 510(1-2): 69-74, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-15740726

ABSTRACT

The interaction of the cannabinoid CB1 receptor with its endogenous ligands plays an essential role in extinction of aversive memories (Marsicano, G., Wotjak, C.T., Azad, S.C., Bisogno, T., Rammes, G., Cascio, M.G., Hermann, H., Tang, J., Hofmann, C., Zieglgansberger, W., Di, M., V, Lutz, B., 2002. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530-534). The present study tested the generality of this observation in respect to positively-reinforced memories. To this end, male cannabinoid CB1 receptor deficient mice (CB1R-/-) and their wild-type littermate controls (CB1R+/+) were trained in an appetitively-motivated operant conditioning task, in which food-deprived animals received a food reward on nose-poking into an illuminated hole. During training, CB1R-/- turned out to be less motivated to participate in the task. After further restriction of daily food consumption, however, CB1R-/- reached the same level of performance as CB1R+/+ as far as number of correct responses and errors of omission are concerned. The accuracy of performance served as a measure for the memory of the light-reward association and was stable at similarly high levels over a retention period of 9 days without additional training (97.6+/-0.5% vs. 97.0+/-0.9% correct responses). During subsequent extinction training, the positive reinforcement was omitted. As a consequence, both CB1R-/- and CB1R+/+ showed a similar decline in accuracy of performance and total number of correct responses, accompanied by an increase in errors of omission. These data demonstrate that the cannabinoid CB1 receptor is not essential for extinction of the stimulus-response association in an appetitively-motivated learning task.


Subject(s)
Appetite/physiology , Learning/physiology , Memory/physiology , Receptor, Cannabinoid, CB1/physiology , Animals , Conditioning, Operant , Extinction, Psychological , Female , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Psychomotor Performance/physiology , Receptor, Cannabinoid, CB1/genetics , Retention, Psychology , Time Factors
9.
Neuropsychopharmacology ; 34(2): 356-66, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18432190

ABSTRACT

There is considerable interest in examining the genes that may contribute to anxiety. We examined the function of ERK/MAPK in the acquisition of conditioned fear, as measured by fear-potentiated startle (FPS) in mice as a model for anticipatory anxiety in humans. We characterized the following for the first time in the mouse: (1) the expression of the ERK/MAPK signaling pathway components at the protein level in the lateral amygdala (LA); (2) the time course of activation of phospho-activated MAPK in the LA after fear conditioning; (3) if pharmacological inhibition of pMAPK could modulate the acquisition of FPS; (4) the cell-type specificity of pMAPK in the LA after fear conditioning. Using western blot and immunohistochemistry techniques and injecting the MEK inhibitor U0126 in the LA, we showed the following: (1) both MEK1/MEK2 and ERK1/ERK2 were co-expressed in the LA of the adult mouse brain; (2) there is a peak of pMAPK at 60 min after fear conditioning; (3) the ERK/MAPK signaling pathway activation is essential for the acquisition of an FPS response; (4) at 60 min, the pMAPK are exclusively neuronal and not glial. These results emphasize the importance of this signaling pathway in the acquisition of conditioned fear in the mouse. Given the widely held view that conditioned fear models the essential aspects of anxiety disorders, the results confirm the ERK/MAPK signaling pathway as a molecular target for the treatment of anxiety disorders in the clinic.


Subject(s)
Amygdala/metabolism , Conditioning, Classical , Fear/physiology , MAP Kinase Signaling System/physiology , Reflex, Startle/physiology , Animals , Blotting, Western , Brain/metabolism , Butadienes/pharmacology , Immunohistochemistry , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Neuroglia/metabolism , Neurons/metabolism , Nitriles/pharmacology , Photomicrography
10.
Mamm Genome ; 18(3): 173-86, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17431719

ABSTRACT

Housing conditions are known to influence laboratory animal behavior. However, it is not known whether housing mice in individually ventilated cages (IVCs) to maintain optimal hygienic conditions alters behavioral baselines established in conventional housing. This issue is important with regard to comparability and reproducibility of data. Therefore, we investigated the impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ (C3H) and C57BL/6J (B6J) mice housed singly either in conventional type II cages with wire bar lids (Conventional), or in IVCs of the same size, but with smooth, untextured lids (IVC classic), thus acoustically attenuated from external stimuli and with limited climbing facilities compared to Conventional. To evaluate the role of climbing, additional mice were kept in IVCs with lids having wire bars ("grid") added to the inner surface (IVC grid). Spontaneous behavior, sensorimotor behavior, and fear learning were measured. IVC housing reduced activity and enhanced anxiety-related behavior in both strains, whereas grooming latency was reduced in B6J only. IVC housing increased Acoustic Startle Response in C3H but not in B6J mice. The "grid" did not compensate for these IVC housing effects. In contrast, B6J mice in IVC grid performed best in fear potentiated startle while B6J mice in IVC classic performed the worst, suggesting that climbing facilities combined with IVC housing facilitate FPS performance in singly-housed B6J males. Our data show that IVC housing can affect behavioral performance and can modulate behavioral parameters in a general and a strain-specific manner, thus having an impact on mouse functional genomics.


Subject(s)
Behavior, Animal , Housing, Animal , Animals , Anxiety , Emotions , Fear , Learning , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Motor Activity , Reflex, Startle , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL