Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35583973

ABSTRACT

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Subject(s)
Epilepsy , Intellectual Disability , Animals , Child , Cricetinae , Cricetulus , Epilepsy/genetics , HEK293 Cells , Humans , Intellectual Disability/genetics , KCNQ Potassium Channels , Mice , Mutation, Missense , Seizures
2.
Cereb Cortex ; 31(10): 4808-4824, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34013328

ABSTRACT

Human AUTS2 mutations are linked to a syndrome of intellectual disability, autistic features, epilepsy, and other neurological and somatic disorders. Although it is known that this unique gene is highly expressed in developing cerebral cortex, the molecular and developmental functions of AUTS2 protein remain unclear. Using proteomics methods to identify AUTS2 binding partners in neonatal mouse cerebral cortex, we found that AUTS2 associates with multiple proteins that regulate RNA transcription, splicing, localization, and stability. Furthermore, AUTS2-containing protein complexes isolated from cortical tissue bound specific RNA transcripts in RNA immunoprecipitation and sequencing assays. Deletion of all major functional isoforms of AUTS2 (full-length and C-terminal) by conditional excision of exon 15 caused breathing abnormalities and neonatal lethality when Auts2 was inactivated throughout the developing brain. Mice with limited inactivation of Auts2 in cerebral cortex survived but displayed abnormalities of cerebral cortex structure and function, including dentate gyrus hypoplasia with agenesis of hilar mossy neurons, and abnormal spiking activity on EEG. Also, RNA transcripts that normally associate with AUTS2 were dysregulated in mutant mice. Together, these findings indicate that AUTS2 regulates RNA metabolism and is essential for development of cerebral cortex, as well as subcortical breathing centers.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Dentate Gyrus/growth & development , Dentate Gyrus/metabolism , RNA/metabolism , Transcription Factors/genetics , Transcription Factors/physiology , Animals , Animals, Newborn , Cerebral Cortex/abnormalities , Cerebral Cortex/metabolism , Electroencephalography , Exons/genetics , Gene Deletion , Gene Expression Regulation , Intellectual Disability/genetics , Mice , Mice, Inbred C57BL , RNA-Seq , Respiration
3.
Proc Natl Acad Sci U S A ; 109(36): 14646-51, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22908258

ABSTRACT

Heterozygous loss-of-function mutations in the brain sodium channel Na(V)1.1 cause Dravet syndrome (DS), a pharmacoresistant infantile-onset epilepsy syndrome with comorbidities of cognitive impairment and premature death. Previous studies using a mouse model of DS revealed reduced sodium currents and impaired excitability in GABAergic interneurons in the hippocampus, leading to the hypothesis that impaired excitability of GABAergic inhibitory neurons is the cause of epilepsy and premature death in DS. However, other classes of GABAergic interneurons are less impaired, so the direct cause of hyperexcitability, epilepsy, and premature death has remained unresolved. We generated a floxed Scn1a mouse line and used the Cre-Lox method driven by an enhancer from the Dlx1,2 locus for conditional deletion of Scn1a in forebrain GABAergic neurons. Immunocytochemical studies demonstrated selective loss of Na(V)1.1 channels in GABAergic interneurons in cerebral cortex and hippocampus. Mice with this deletion died prematurely following generalized tonic-clonic seizures, and they were equally susceptible to thermal induction of seizures as mice with global deletion of Scn1a. Evidently, loss of Na(V)1.1 channels in forebrain GABAergic neurons is both necessary and sufficient to cause epilepsy and premature death in DS.


Subject(s)
Epilepsies, Myoclonic/genetics , Interneurons/metabolism , NAV1.1 Voltage-Gated Sodium Channel/deficiency , Animals , Electrocardiography , Electroencephalography , Epilepsies, Myoclonic/pathology , Hippocampus/metabolism , Immunohistochemistry , Mice , Mice, Transgenic , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Plasmids/genetics , Prosencephalon/metabolism
4.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168178

ABSTRACT

Dravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of SCN1A , which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV human SCN1A gene replacement therapy using cell class-specific enhancers. We generated a split-intein fusion form of SCN1A to circumvent AAV packaging limitations and deliver SCN1A via a dual vector approach using cell class-specific enhancers. These constructs produced full-length Na V 1.1 protein and functional sodium channels in HEK293 cells and in brain cells in vivo . After packaging these vectors into enhancer-AAVs and administering to mice, immunohistochemical analyses showed telencephalic GABAergic interneuron-specific and dose-dependent transgene biodistribution. These vectors conferred strong dose-dependent protection against postnatal mortality and seizures in two DS mouse models carrying independent loss-of-function alleles of Scn1a, at two independent research sites, supporting the robustness of this approach. No mortality or toxicity was observed in wild-type mice injected with single vectors expressing either the N-terminal or C-terminal halves of SCN1A , or the dual vector system targeting interneurons. In contrast, nonselective neuronal targeting of SCN1A conferred less rescue against mortality and presented substantial preweaning lethality. These findings demonstrate proof-of-concept that interneuron-specific AAV-mediated SCN1A gene replacement is sufficient for significant rescue in DS mouse models and suggest it could be an effective therapeutic approach for patients with DS.

5.
Epilepsy Curr ; : 15357597211004556, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33787378

ABSTRACT

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Likely pathophysiological mechanisms include seizure-induced cardiac and respiratory dysregulation. A frequently identified feature in SUDEP cases is that they occur at night. This raises the question of a role for sleep state in regulating of SUDEP. An association with sleep has been identified in a number of studies with patients and in animal models. The focus of this section of the Sleep and Epilepsy Workshop was on identifying and understanding the role for sleep and time of day in the pathophysiology of SUDEP.

SELECTION OF CITATIONS
SEARCH DETAIL