Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cytotherapy ; 25(12): 1277-1284, 2023 12.
Article in English | MEDLINE | ID: mdl-37815775

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are polymorphic, adherent cells with the capability to stimulate tissue regeneration and modulate immunity. MSCs have been broadly investigated for potential therapeutic applications, particularly immunomodulatory properties, wound healing and tissue regeneration. The exact physiologic role of MSCs, however, remains poorly understood, and this gap in knowledge significantly impedes the rational development of therapeutic cells. Here, we considered interferon γ (IFN-γ) and tumor necrosis factor alpha (TNF-α), two cytokines likely encountered physiologically and commonly used in cell manufacturing. For comparison, we studied interleukin-10 (IL-10) (anti-inflammatory) and interleukin-4 (IL-4) (type 2 cytokine). METHODS: We directly assessed the effects of these cytokines on bone marrow MSCs by comparing RNA Seq transcriptional profiles. Western blotting and flow cytometry were also used to evaluate effects of cytokine priming. RESULTS: The type 1 cytokines (IFN-γ and TNF-α) induced striking changes in gene expression and remarkably different profiles from one another. Importantly, priming MSCs with either of these cytokines did not increase variability among multiple donors beyond what is intrinsic to non-primed MSCs from different donors. IFN-γ-primed MSCs expressed IDO1 and chemokines that recruit activated T cells. In contrast, TNF-α-primed MSCs expressed genes in alternate pathways, namely PGE2 and matrix metalloproteinases synthesis, and chemokines that recruit neutrophils. IL-10 and IL-4 priming had little to no effect. CONCLUSIONS: Our data suggest that IFN-γ-primed MSCs may be a more efficacious immunosuppressive therapy aimed at diseases that target T cells (ie, graft-versus-host disease) compared with TNF-α-primed or non-primed MSCs, which may be better suited for therapies in other disease settings. These results contribute to our understanding of MSC bioactivity and suggest rational ex vivo cytokine priming approaches for MSC manufacturing and therapeutic applications.


Subject(s)
Cytokines , Mesenchymal Stem Cells , Interleukin-10 , Tumor Necrosis Factor-alpha , Interleukin-4/pharmacology , Interferon-gamma , Chemokines
2.
J Cell Biochem ; 122(5): 538-548, 2021 05.
Article in English | MEDLINE | ID: mdl-33480071

ABSTRACT

The development of bone requires carefully choregraphed signaling to bone progenitors to form bone. Our group recently described the requirement of transforming growth factor beta receptor 3 (TGFßR3), a receptor involved in TGFß pathway signaling, during osteoblast lineage commitment in mice. The TGFß pathway is known to play multiple osteo-inductive and osteo-inhibitory roles during osteoblast development and TGFßR3 human mutations are associated with reduced bone mineral density, making TGFßR3 a unique target for bone inductive therapy. In this article, we demonstrated increased mineralization of human pediatric bone-derived osteoblast-like cells (HBO) when treated with soluble TGFßR3 (sR3) using Alizarin Red staining. Osteogenic commitment of HBO cells was demonstrated by induction of osteogenic genes RUNX2, osteocalcin, osteopontin, and osterix. Evaluation of the canonical TGFß pathway signaling demonstrated that sR3 was able to induce bone formation in HBO cells, mainly through activation of noncanonical targets of TGFß pathway signaling including AKT, ERK, and p38 MAP kinases. Inhibition of these osteogenic noncanonical pathways in the HBO cells also inhibited mineralization, suggesting they are each required. Although no induction of SMAD1, 5, and 9 was observed, there was the activation of SMAD2 and 3 suggesting that sR3 is primarily signaling via the noncanonical pathways during osteogenic induction of the HBO. Our results highlight the important role of TGFßR3 in osteoblast induction of mineralization in human bone cells through noncanonical targets of TGFß signaling. Future studies will focus on the ability of sR3 to induce bone regeneration in vivo using animal models.


Subject(s)
Osteoblasts/cytology , Osteoblasts/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Humans , Osteogenesis/genetics , Osteogenesis/physiology , Signal Transduction/genetics , Signal Transduction/physiology
3.
J Cell Sci ; 128(4): 683-94, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25609708

ABSTRACT

The process of osteoclastic bone resorption is complex and regulated at multiple levels. The role of osteoclast (OCL) fusion and motility in bone resorption are unclear, with the movement of OCL on bone largely unexplored. RANKL (also known as TNFSF11) is a potent stimulator of murine osteoclastogenesis, and activin A (ActA) enhances that stimulation in whole bone marrow. ActA treatment does not induce osteoclastogenesis in stroma-free murine bone marrow macrophage cultures (BMM), but rather inhibits RANKL-induced osteoclastogenesis. We hypothesized that ActA and RANKL differentially regulate osteoclastogenesis by modulating OCL precursors and mature OCL migration. Time-lapse video microscopy measured ActA and RANKL effects on BMM and OCL motility and function. ActA completely inhibited RANKL-stimulated OCL motility, differentiation and bone resorption, through a mechanism mediated by ActA-dependent changes in SMAD2, AKT1 and inhibitor of nuclear factor κB (IκB) signaling. The potent and dominant inhibitory effect of ActA was associated with decreased OCL lifespan because ActA significantly increased activated caspase-3 in mature OCL and OCL precursors. Collectively, these data demonstrate a dual action for ActA on murine OCLs.


Subject(s)
Activins/pharmacology , Bone Resorption/metabolism , Macrophage Colony-Stimulating Factor/genetics , Osteoclasts/cytology , RANK Ligand/genetics , Activins/genetics , Animals , Bone Marrow Cells/metabolism , Caspase 3/metabolism , Cathepsin K/drug effects , Cathepsin K/metabolism , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , I-kappa B Kinase/metabolism , Macrophages/metabolism , Mice , Osteoclasts/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Smad2 Protein/metabolism
4.
Curr Osteoporos Rep ; 12(3): 376-82, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24980541

ABSTRACT

The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down's syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity, and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health, and quality of life of people with Down syndrome will be discussed.


Subject(s)
Down Syndrome/complications , Musculoskeletal Abnormalities/complications , Osteoarthritis, Spine/complications , Osteoporosis/complications , Humans
5.
Front Bioeng Biotechnol ; 11: 1217211, 2023.
Article in English | MEDLINE | ID: mdl-37781534

ABSTRACT

JAG1 is a ligand that activates the NOTCH signaling pathway which plays a crucial role in determining cell fate behavior through cell-to-cell signaling. JAG1-NOTCH signaling is required for mesenchymal stem cell (MSC) differentiation into cardiomyocytes and cranial neural crest (CNC) cells differentiation into osteoblasts, making it a regenerative candidate for clinical therapy to treat craniofacial bone loss and myocardial infarction. However, delivery of soluble JAG1 has been found to inhibit NOTCH signaling due to the requirement of JAG1 presentation in a bound form. For JAG1-NOTCH signaling to occur, JAG1 must be immobilized within a scaffold and the correct orientation between the NOTCH receptor and JAG1 must be achieved. The lack of clinically translatable JAG1 delivery methods has driven the exploration of alternative immobilization approaches. This review discusses the role of JAG1 in disease, the clinical role of JAG1 as a treatment, and summarizes current approaches for JAG1 delivery. An in-depth review was conducted on literature that used both in vivo and in vitro delivery models and observed the canonical versus non-canonical NOTCH pathway activated by JAG1. Studies were then compared and evaluated based on delivery success, functional outcomes, and translatability. Delivering JAG1 to harness its ability to control cell fate has the potential to serve as a therapeutic for many diseases.

6.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873448

ABSTRACT

Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP-2 application with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesized that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 and the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.

7.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187740

ABSTRACT

Orofacial clefts are the most common craniofacial congenital anomaly. Following cleft palate repair, up to 60% of surgeries have wound healing complications leading to oronasal fistula (ONF), a persistent connection between the roof of the mouth and the nasal cavity. The current gold standard methods for ONF repair use human allograft tissues; however, these procedures have risks of graft infection and/or rejection, requiring surgical revisions. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. We utilized a repurposed FDA-approved immunomodulatory drug, FTY720, to reduce the egress of lymphocytes and induce immune cell fate switching toward pro-regenerative phenotypes. Here, we engineered a bilayer biomaterial system using Tegaderm™, a liquid-impermeable wound dressing, to secure and control the delivery of FTY720- nanofiber scaffolds (FTY720-NF). We optimized release kinetics of the bilayer FTY720-NF to sustain drug release for up to 7d with safe, efficacious transdermal absorption and tissue biodistribution. Through comprehensive immunophenotyping, our results illustrate a pseudotime pro-regenerative state transition in recruited hybrid immune cells to the wound site. Additional histological assessments established a significant difference in full thickness ONF closure in mice on Day 7 following treatment with bilayer FTY720-NF, compared to controls. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options for pediatric patients. One Sentence Summary: Local delivery of bilayer FTY720-nanofiber scaffolds in an ONF mouse model promotes complete wound closure through modulation of pro-regenerative immune and stromal cells.

8.
Bone ; 143: 115657, 2021 02.
Article in English | MEDLINE | ID: mdl-32980561

ABSTRACT

Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.


Subject(s)
Neural Crest , Receptors, Notch , Adult , Animals , Bone Regeneration , Child , Humans , Jagged-1 Protein/metabolism , Mice , Mice, Inbred C57BL , Neural Crest/metabolism , Osteoblasts/metabolism , Receptors, Notch/metabolism , Ubiquitin-Protein Ligases , rho GTP-Binding Proteins
9.
Polymers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808295

ABSTRACT

Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.

10.
Acta Biomater ; 91: 209-219, 2019 06.
Article in English | MEDLINE | ID: mdl-31029828

ABSTRACT

Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Patients undergoing cleft palate repair have a high degree of wound healing complications with up to 60% experiencing oronasal fistula (ONF) formation. In this study, we developed a mouse model of hard palate mucosal injury, to study the endogenous injury response during oral cavity wound healing and ONF formation. Immunophenotyping of the inflammatory infiltrate following hard palate injury showed delayed recruitment of non-classical LY6Clo monocytes and failure to resolve inflammation. To induce a pro-regenerative inflammatory response, delivery of FTY720 nanofiber scaffolds following hard palate mucosal injury promoted complete ONF healing and was associated with increased LY6Clo monocytes and pro-regenerative M2 macrophages. Alteration in gene expression with FTY720 delivery included increased Sox2 expression, reduction in pro-inflammatory IL-1, IL-4 and IL-6 and increased pro-regenerative IL-10 expression. Increased keratinocyte proliferation during ONF healing was observed at day 5 following FTY720 delivery. Our results show that local delivery of FTY720 from nanofiber scaffolds in the oral cavity enhances healing of ONF, occurring through multiple immunomodulatory mechanisms. STATEMENT OF SIGNIFICANCE: Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.


Subject(s)
Fingolimod Hydrochloride , Immunomodulation/drug effects , Palate, Hard , Wound Healing , Animals , Cytokines/immunology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Nanofibers/chemistry , Nanofibers/therapeutic use , Palate, Hard/immunology , Palate, Hard/injuries , Palate, Hard/pathology , SOXB1 Transcription Factors/immunology , Wound Healing/drug effects , Wound Healing/immunology
11.
Cell Signal ; 54: 130-138, 2019 02.
Article in English | MEDLINE | ID: mdl-30529759

ABSTRACT

During craniofacial development, cranial neural crest (CNC) cells migrate into the developing face and form bone through intramembranous ossification. Loss of JAGGED1 (JAG1) signaling in the CNC cells is associated with maxillary hypoplasia or maxillary bone deficiency (MBD) in mice and recapitulates the MBD seen in humans with Alagille syndrome. JAGGED1, a membrane-bound NOTCH ligand, is required for normal craniofacial development, and Jagged1 mutations in humans are known to cause Alagille Syndrome, which is associated with cardiac, biliary, and bone phenotypes and these children experience increased bony fractures. Previously, we demonstrated deficient maxillary osteogenesis in Wnt1-cre;Jagged1f/f (Jag1CKO) mice by conditional deletion of Jagged1 in maxillary CNC cells. In this study, we investigated the JAG1 signaling pathways in a CNC cell line. Treatment with JAG1 induced osteoblast differentiation and maturation markers, Runx2 and Ocn, respectively, Alkaline Phosphatase (ALP) production, as well as classic NOTCH1 targets, Hes1 and Hey1. While JAG1-induced Hes1 and Hey1 expression levels were predictably decreased after DAPT (NOTCH inhibitor) treatment, JAG1-induced Runx2 and Ocn levels were surprisingly constant in the presence of DAPT, indicating that JAG1 effects in the CNC cells are independent of the canonical NOTCH pathway. JAG1 treatment of CNC cells increased Janus Kinase 2 (JAK2) phosphorylation, which was refractory to DAPT treatment, highlighting the importance of the non-canonical NOTCH pathway during CNC cells osteoblast commitment. Pharmacologic inhibition of JAK2 phosphorylation, with and without DAPT treatment, upon JAG1 induction reduced ALP production and, Runx2 and Ocn gene expression. Collectively, these data suggest that JAK2 is an essential component downstream of a non-canonical JAG1-NOTCH1 pathway through which JAG1 stimulates expression of osteoblast-specific gene targets in CNC cells that contribute to osteoblast differentiation and bone mineralization.


Subject(s)
Calcification, Physiologic/physiology , Jagged-1 Protein , Janus Kinase 2/physiology , Maxillofacial Development/physiology , Neural Crest , Osteoblasts , Osteogenesis/physiology , Animals , Cells, Cultured , Jagged-1 Protein/pharmacology , Jagged-1 Protein/physiology , Mice , Neural Crest/cytology , Neural Crest/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism
12.
Toxicol Sci ; 156(1): 25-38, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28031415

ABSTRACT

Drug-induced proarrhythmia is a major safety issue in drug development. Developing sensitive in vitro assays that can predict drug-induced cardiotoxicity in humans has been a challenge of toxicology research for decades. Recently, induced pluripotent stem cell-derived human cardiomyocytes (iPSC-hCMs) have become a promising model because they largely replicate the electrophysiological behavior of human ventricular cardiomyocytes. Patient-specific iPSC-hCMs have been proposed for personalized cardiac drug selection and adverse drug response prediction; however, many procedures are involved in cardiomyocytes differentiation and purification process, which may result in large line-to-line and batch-to-batch variations. Here, we examined the purity, cardiac ion channel gene expression profile, and electrophysiological response of 3 batches of iPSC-hCMs from each of 2 major cell suppliers. We found that iPSC-hCMs from both vendors had similar purities. Most of the cardiac ion channel genes were expressed uniformly among different batches of iCells, while larger variations were found in Cor.4U cells, particularly in the expression of CACNA1C, KCND2, and KCNA5 genes, which could underlie the differences in baseline beating rate (BR) and field potential duration (FPD) measurements. Although, in general, the electrophysiological responses of different batches of cells to Na+, Ca2+, Ikr, and Iks channel blockers were similar, with Ikr blocker-induced proarrhythmia, the sensitivities were depended on baseline BR and FPD values: cells that beat slower had longer FPD and greater sensitivity to drug-induced proarrhythmia. Careful evaluation of the performance of iPSC-hCMs and methods of data analysis is warranted for shaping regulatory standards in qualifying iPSC-hCMs for drug safety testing.


Subject(s)
Calcium Channel Blockers/adverse effects , Drug Evaluation, Preclinical/methods , Gene Expression Regulation/drug effects , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/adverse effects , Toxicity Tests, Acute/methods , Voltage-Gated Sodium Channel Blockers/adverse effects , Anti-Arrhythmia Agents/pharmacology , Antioxidants/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cell Differentiation/drug effects , Cell Line , Drug Evaluation, Preclinical/economics , Electrophysiological Phenomena/drug effects , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Kinetics , Kv1.5 Potassium Channel/genetics , Kv1.5 Potassium Channel/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Potassium Channel Blockers/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Reproducibility of Results , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Toxicity Tests, Acute/economics , Voltage-Gated Sodium Channel Blockers/pharmacology
13.
J Bone Miner Res ; 32(7): 1421-1431, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370412

ABSTRACT

Bone is a common site for metastasis in breast cancer patients and is associated with a series of complications that significantly compromise patient survival, partially due to the advanced stage of disease at the time of detection. Currently, no clinically-approved biomarkers can identify or predict the development of bone metastasis. We recently identified a unique peptide fragment of parathyroid hormone-related protein (PTHrP), PTHrP(12-48), as a validated serum biomarker in breast cancer patients that correlates with and predicts the presence of bone metastases. In this study, the biological activity and mode of action of PTHrP(12-48) was investigated. Sequence-based and structure-based bioinformatics techniques predicted that the PTHrP(12-48) fragment formed an alpha helical core followed by an unstructured region after residue 40 or 42. Thereafter, detailed structure alignment and molecular docking simulations predicted a lack of interaction between PTHrP(12-48) and the cognate PTH1 receptor (PTHR1). The in silico prediction was confirmed by the lack of PTHrP(12-48)-stimulated cAMP accumulation in PTHR1-expressing human SaOS2 cells. Using a specific human PTHrP(12-48) antibody that we developed, PTHrP(12-48) was immunolocalized in primary and bone metastatic human breast cancer cells, as well as within human osteoclasts (OCLs) in bone metastasis biopsies, with little or no localization in other resident bone or bone marrow cells. In vitro, PTHrP(12-48) was internalized into cultured primary human OCLs and their precursors within 60 min. Interestingly, PTHrP(12-48) treatment dose-dependently suppressed osteoclastogenesis, via the induction of apoptosis in both OCL precursors as well as in mature OCLs, as measured by the activation of cleaved caspase 3. Collectively, these data suggest that PTHrP(12-48) is a bioactive breast cancer-derived peptide that locally regulates the differentiation of hematopoietic cells and the activity of osteoclasts within the tumor-bone marrow microenvironment, perhaps to facilitate tumor control of bone. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Differentiation , Cellular Microenvironment , Osteoclasts/metabolism , Parathyroid Hormone-Related Protein/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Female , Fibroblast Growth Factor-23 , Humans , Neoplasm Metastasis , Osteoclasts/pathology
14.
Bone ; 61: 39-43, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24389365

ABSTRACT

Clinically significant serum parathyroid hormone (PTH) variations have been reported in multiple myeloma (MM) patients treated with proteasome inhibitors. To elucidate the association between serum PTH variations and proteasome inhibition in MM, the effect of PTH and PTHR1 ligands on the proteasome inhibitors bortezomib and carfilzomib in vitro and in vivo was determined. The MM cell lines ARP1, OC1 and 5TGM1 expressed mRNA and protein encoding PTH receptor 1 (PTHR1). Treatment of 5TGM1 cells with either PTH(1-34), bortezomib or carfilzomib alone dose-dependently inhibited 5TGM1 cell proliferation. However, treatment with the potent PTHR1 antagonist [TYR34]PTH(7-34) (PTH(7-34)) had no significant effect on myeloma cell proliferation and cell viability. In contrast, when used in combination with bortezomib or carfilzomib, PTH(7-34) treatment significantly reduced the bortezomib or carfilzomib-associated decrease in cell proliferation. Treatment of the C57BL/KaLwRij mouse myeloma model with either bortezomib or carfilzomib provided a significantly prolonged survival benefit compared to controls (p=0.04; p=0.01 respectfully). This potent anti-myeloma effect was completely abrogated by concomitant treatment with PTH(7-34). These results suggest an important role of the PTHR1 in the anti-myeloma effect of proteosome inhibition.


Subject(s)
Multiple Myeloma/metabolism , Proteasome Inhibitors/pharmacology , Receptor, Parathyroid Hormone, Type 1/metabolism , Animals , Boronic Acids/pharmacology , Bortezomib , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Male , Mice , Oligopeptides/pharmacology , Pyrazines/pharmacology
15.
Bone ; 61: 176-85, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24486955

ABSTRACT

Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p<0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p<0.05), as measured by NTx levels. In a total of 22 ER+ and 15 ER- primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1-77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6-77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/secondary , Interleukin-8/metabolism , Osteolysis/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Screws , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL