Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673767

ABSTRACT

The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and ß-glycerophosphate (ßGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 µg.mL-1/2 mM Asc/ßGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.


Subject(s)
Energy Metabolism , Osteoblasts , Osteogenesis , Oxidative Stress , Animals , Mice , Osteogenesis/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Line , Glycerophosphates/metabolism , Glycerophosphates/pharmacology , Calcification, Physiologic , Cell Differentiation , Cell Culture Techniques/methods , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Culture Media/chemistry , Culture Media/pharmacology
2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063229

ABSTRACT

Diabetic bone disease (DBD) is a frequent complication in patients with type 2 diabetes mellitus (T2DM), characterised by altered bone mineral density (BMD) and bone turnover marker (BTMs) levels. The impact of different anti-diabetic medications on the skeleton remains unclear, and studies have reported conflicting results; thus, the need for a comprehensive systematic review is of paramount importance. A systematic search was conducted in PubMed and the Cochrane Library. The primary outcomes assessed were changes in BMD in relation to different anatomical sites and BTMs, including mainly P1NP and CTX as well as OPG, OCN, B-ALP and RANK-L. Risk of bias was evaluated using the JADAD score. The meta-analysis of 19 randomised controlled trials comprising 4914 patients showed that anti-diabetic medications overall increased BMD at the lumbar spine (SMD: 0.93, 95% CI [0.13, 1.73], p = 0.02), femoral neck (SMD: 1.10, 95% CI [0.47, 1.74], p = 0.0007) and in total hip (SMD: 0.33, 95% CI [-0.25, 0.92], p = 0.27) in comparison with placebo, but when compared with metformin, the overall effect favoured metformin over other treatments (SMD: -0.23, 95% CI [-0.39, -0.07], p = 0.004). GLP-1 receptor agonists and insulin analogues seem to improve BMD compared to placebo, while SGLT2 inhibitors and thiazolidinediones (TZDs) showed no significant effect, although studies' number cannot lead to safe conclusions. For BTMs, TZDs significantly increased P1NP levels compared to placebo. However, no significant differences were observed for CTX, B-ALP, OCN, OPG, and RANK-L between anti-diabetic drugs and metformin or placebo. High heterogeneity and diverse follow-up durations among studies were evident, which obscures the validity of the results. This review highlights the variable effects of anti-diabetic drugs on DBD in T2DM patients, emphasising the need for long-term trials with robust designs to better understand these relationships and inform clinical decisions.


Subject(s)
Biomarkers , Bone Density , Bone Remodeling , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Bone Density/drug effects , Hypoglycemic Agents/therapeutic use , Bone Remodeling/drug effects , Metformin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL