Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nat Rev Genet ; 25(1): 46-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37491400

ABSTRACT

Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.


Subject(s)
Rare Diseases , Zebrafish , Humans , Animals , Mice , Zebrafish/genetics , Drosophila melanogaster/genetics , Caenorhabditis elegans/genetics , Mammals
2.
Am J Hum Genet ; 111(4): 742-760, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38479391

ABSTRACT

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Subject(s)
Intellectual Disability , Musculoskeletal Abnormalities , Animals , Child , Humans , Developmental Disabilities/genetics , Developmental Disabilities/diagnosis , Intellectual Disability/genetics , Mammals , Musculoskeletal Abnormalities/genetics , Mutation, Missense , Transcription Factors/genetics , Drosophila
3.
Proc Natl Acad Sci U S A ; 121(9): e2322582121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381787

ABSTRACT

Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.


Subject(s)
Drosophila Proteins , Humans , Child , Animals , Mice , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Polarity/genetics , Drosophila/genetics , Signal Transduction/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37827158

ABSTRACT

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Subject(s)
Congenital Abnormalities , Developmental Disabilities , Histone-Lysine N-Methyltransferase , Humans , Gain of Function Mutation , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Lysine , Methylation , Methyltransferases/genetics , Neoplasms/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Developmental Disabilities/genetics , Congenital Abnormalities/genetics
5.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37054711

ABSTRACT

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Subject(s)
Drosophila Proteins , Nervous System Diseases , Adult , Animals , Humans , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mutation/genetics , RNA, Messenger
6.
Am J Hum Genet ; 109(10): 1923-1931, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36067766

ABSTRACT

MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.


Subject(s)
Intellectual Disability , Microcephaly , Nervous System Malformations , Animals , DNA, Complementary , Drosophila/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Membrane Proteins , Microcephaly/genetics , Microfilament Proteins , Mutation, Missense/genetics , Nervous System Malformations/genetics , Phenotype
7.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35502740

ABSTRACT

In complex nervous systems, neurons must identify their correct partners to form synaptic connections. The prevailing model to ensure correct recognition posits that cell-surface proteins (CSPs) in individual neurons act as identification tags. Thus, knowing what cells express which CSPs would provide insights into neural development, synaptic connectivity, and nervous system evolution. Here, we investigated expression of Dpr and DIP genes, two CSP subfamilies belonging to the immunoglobulin superfamily, in Drosophila larval motor neurons (MNs), muscles, glia and sensory neurons (SNs) using a collection of GAL4 driver lines. We found that Dpr genes are more broadly expressed than DIP genes in MNs and SNs, and each examined neuron expresses a unique combination of Dpr and DIP genes. Interestingly, many Dpr and DIP genes are not robustly expressed, but are found instead in gradient and temporal expression patterns. In addition, the unique expression patterns of Dpr and DIP genes revealed three uncharacterized MNs. This study sets the stage for exploring the functions of Dpr and DIP genes in Drosophila MNs and SNs and provides genetic access to subsets of neurons.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Larva/genetics , Larva/metabolism , Membrane Proteins/metabolism , Sensory Receptor Cells/metabolism , Synapses/metabolism
8.
Hum Mol Genet ; 31(16): 2751-2765, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35348658

ABSTRACT

The Roundabout (Robo) receptors, located on growth cones of neurons, induce axon repulsion in response to the extracellular ligand Slit. The Robo family of proteins controls midline crossing of commissural neurons during development in flies. Mono- and bi-allelic variants in human ROBO1 (HGNC: 10249) have been associated with incomplete penetrance and variable expressivity for a breath of phenotypes, including neurodevelopmental defects such as strabismus, pituitary defects, intellectual impairment, as well as defects in heart and kidney. Here, we report two novel ROBO1 variants associated with very distinct phenotypes. A homozygous missense p.S1522L variant in three affected siblings with nystagmus; and a monoallelic de novo p.D422G variant in a proband who presented with early-onset epileptic encephalopathy. We modeled these variants in Drosophila and first generated a null allele by inserting a CRIMIC T2A-GAL4 in an intron. Flies that lack robo1 exhibit reduced viability but have very severe midline crossing defects in the central nervous system. The fly wild-type cDNA driven by T2A-Gal4 partially rescues both defects. Overexpression of the human reference ROBO1 with T2A-GAL4 is toxic and reduces viability, whereas the recessive p.S1522L variant is less toxic, suggesting that it is a partial loss-of-function allele. In contrast, the dominant variant in fly robo1 (p.D413G) affects protein localization, impairs axonal guidance activity and induces mild phototransduction defects, suggesting that it is a neomorphic allele. In summary, our studies expand the phenotypic spectrum associated with ROBO1 variant alleles.


Subject(s)
Nerve Tissue Proteins , Neurodevelopmental Disorders , Receptors, Immunologic , Animals , Axons/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Nerve Tissue Proteins/metabolism , Neurodevelopmental Disorders/genetics , Receptors, Immunologic/metabolism , Roundabout Proteins
9.
Hum Mol Genet ; 31(19): 3231-3244, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35234901

ABSTRACT

BACKGROUND: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS: Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS: Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION: We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.


Subject(s)
Cerebellar Diseases , Drosophila Proteins , Intellectual Disability , Nervous System Malformations , Neurodegenerative Diseases , Neurodevelopmental Disorders , Animals , Basic Helix-Loop-Helix Transcription Factors , Cerebellar Diseases/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Membrane Proteins/genetics , Neurodevelopmental Disorders/genetics , Neuroglia , Repressor Proteins
10.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34314705

ABSTRACT

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Subject(s)
Developmental Disabilities/genetics , Drosophila Proteins/genetics , Eye Diseases, Hereditary/genetics , Intellectual Disability/genetics , Karyopherins/genetics , Musculoskeletal Abnormalities/genetics , beta Karyopherins/genetics , ran GTP-Binding Protein/genetics , Alleles , Amino Acid Sequence , Animals , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Female , Gene Dosage , Gene Expression Regulation, Developmental , Genome, Human , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Intellectual Disability/pathology , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Male , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Mutation , Neurons/metabolism , Neurons/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Whole Genome Sequencing , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
11.
Genet Med ; 26(7): 101125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38522068

ABSTRACT

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).


Subject(s)
Carcinoma, Hepatocellular , Developmental Disabilities , Homozygote , Liver Neoplasms , Loss of Function Mutation , Mutation, Missense , Animals , Female , Humans , Infant , Male , Alleles , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Drosophila/genetics , Drosophila Proteins/genetics , Genetic Predisposition to Disease , Liver Diseases/genetics , Liver Diseases/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mutation, Missense/genetics , Phenotype , Vesicular Transport Proteins/genetics
12.
Genet Med ; 25(6): 100833, 2023 06.
Article in English | MEDLINE | ID: mdl-37013900

ABSTRACT

PURPOSE: Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS: Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS: Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION: The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Child , Humans , Drosophila/genetics , Actins/genetics , Gain of Function Mutation , Transcription Factors/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phenotype
13.
Brain ; 145(5): 1684-1697, 2022 06 03.
Article in English | MEDLINE | ID: mdl-34788397

ABSTRACT

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.


Subject(s)
Cdh1 Proteins , Epilepsy, Generalized , Epilepsy , Microcephaly , Ataxia , Cdh1 Proteins/genetics , Child , Epilepsy/genetics , Epilepsy, Generalized/genetics , Humans , Loss of Function Mutation , Microcephaly/genetics , Phenotype
14.
Hum Mol Genet ; 29(9): 1568-1579, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32356556

ABSTRACT

The translocase of outer mitochondrial membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyper-reflexia, ataxia, dystonia and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1 was found to have a p.Thr607Ile variant while Individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4-driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knockdown of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals.


Subject(s)
Genetic Predisposition to Disease , Leukoencephalopathies/genetics , Mitochondrial Membrane Transport Proteins/genetics , Nervous System Diseases/genetics , Age of Onset , Ataxia/genetics , Ataxia/pathology , Child , Dystonia/genetics , Dystonia/pathology , Female , Humans , Leukoencephalopathies/pathology , Male , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Nervous System Diseases/pathology , Reflex, Abnormal/genetics
15.
Am J Hum Genet ; 105(2): 413-424, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31327508

ABSTRACT

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.


Subject(s)
Body Dysmorphic Disorders/pathology , Cerebellum/abnormalities , Coloboma/pathology , Developmental Disabilities/pathology , Epilepsy/pathology , Intellectual Disability/pathology , Mutation , Nervous System Malformations/pathology , WD40 Repeats/genetics , Adult , Amino Acid Sequence , Animals , Body Dysmorphic Disorders/genetics , Cerebellum/pathology , Child , Coloboma/genetics , Developmental Disabilities/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Epilepsy/genetics , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nervous System Malformations/genetics , Phenotype , Sequence Homology , Young Adult
16.
Am J Hum Genet ; 103(2): 245-260, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30057031

ABSTRACT

Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.

17.
Genet Med ; 23(10): 1889-1900, 2021 10.
Article in English | MEDLINE | ID: mdl-34113007

ABSTRACT

PURPOSE: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants. METHODS: We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality. RESULTS: Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants. CONCLUSION: GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.


Subject(s)
Bone Morphogenetic Proteins , Craniofacial Abnormalities/genetics , Growth Differentiation Factors , Animals , Bone Morphogenetic Proteins/genetics , Growth Differentiation Factors/genetics , Humans , Mutation, Missense , Phenotype , Spine , Zebrafish/genetics
19.
Development ; 142(10): 1794-805, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25968315

ABSTRACT

Tubular networks are central to the structure and function of many organs, such as the vertebrate lungs or the Drosophila tracheal system. Their component epithelial cells are able to proliferate and to undergo complex morphogenetic movements, while maintaining their barrier function. Little is known about the details of the mitotic process in tubular epithelia. Our study presents a comprehensive model of cellular remodeling and proliferation in the dorsal branches of third-instar Drosophila larvae. Through a combination of immunostaining and novel live imaging techniques, we identify the key steps in the transition from a unicellular to a multicellular tube. Junctional remodeling precedes mitosis and, as the cells divide, new junctions are formed through several variations of what we refer to as 'asymmetric cytokinesis'. Depending on the spacing of cells along the dorsal branch, mitosis can occur either before or after the transition to a multicellular tube. In both instances, cell separation is accomplished through asymmetric cytokinesis, a process that is initiated by the ingression of the cytokinetic ring. Unequal cell compartments are a possible but rare outcome of completing mitosis through this mechanism. We also found that the Dpp signaling pathway is required but not sufficient for cell division in the dorsal branches.


Subject(s)
Drosophila/embryology , Trachea/embryology , Actomyosin/metabolism , Animals , Cytokinesis/genetics , Cytokinesis/physiology , Drosophila/cytology , Drosophila/metabolism , Mitosis/physiology , Trachea/cytology , Trachea/metabolism
20.
PLoS Genet ; 11(10): e1005376, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26468882

ABSTRACT

The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied. However, the regulation of its expression during wing development is poorly understood. In this study, we analyzed ap transcriptional regulation at the endogenous locus and identified three cis-regulatory modules (CRMs) essential for wing development. Only when the three CRMs are combined, robust ap expression is obtained. In addition, we genetically and molecularly analyzed the trans-factors that regulate these CRMs. Our results propose a three-step mechanism for the cell lineage compartment expression of ap that includes initial activation, positive autoregulation and Trithorax-mediated maintenance through separable CRMs.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/genetics , Regulatory Elements, Transcriptional/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Animals , Body Patterning/genetics , Cell Lineage , Drosophila Proteins/biosynthesis , Drosophila melanogaster/growth & development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins/biosynthesis , Imaginal Discs/growth & development , LIM-Homeodomain Proteins/biosynthesis , Transcription Factors/biosynthesis , Wings, Animal/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL