Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38497111

ABSTRACT

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Subject(s)
Islets of Langerhans , Oxygen , Humans , Oxygen/metabolism , Hypoxia/metabolism , Islets of Langerhans/metabolism , Spheroids, Cellular/metabolism , Cell Hypoxia , Cell Survival
2.
Am J Transplant ; 24(2): 177-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37813189

ABSTRACT

Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained ß cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Mice , Animals , Cell Culture Techniques , Hydrogels , Insulin , Cell Survival
3.
Diabetologia ; 66(1): 163-173, 2023 01.
Article in English | MEDLINE | ID: mdl-36201044

ABSTRACT

AIMS/HYPOTHESIS: Islet transplantation has been studied in small cohorts of recipients with type 1 diabetes complicated by severe hypoglycaemic events (SHEs). We determined factors associated with favourable outcomes in a large cohort of recipients reported to the Collaborative Islet Transplant Registry (CITR). METHODS: In 398 non-uraemic islet transplant alone (ITA) recipients with type 1 diabetes and SHEs, transplanted between 1999 and 2015 and with at least 1 year follow-up, we analysed specified favourable outcomes against each of all available characteristics of pancreas donors, islet grafts, recipients and immunosuppressive regimens, as well as immunosuppression and procedure-related serious adverse events (SAEs). RESULTS: Four factors were associated with the highest rates of favourable outcomes: recipient age ≥35 years; total infused islets ≥325,000 islet equivalents; induction immunosuppression with T cell depletion and/or TNF-α inhibition; and maintenance with both mechanistic target of rapamycin (mTOR) and calcineurin inhibitors. At 5 years after the last islet infusion, of the recipients meeting these four common favourable factors (4CFF; N=126), 95% were free of SHEs, 76% had HbA1c <53 mmol/mol (7.0%), 73% had HbA1c <53 mmol/mol (7.0%) and absence of SHEs, and 53% were insulin independent, significantly higher rates than in the remaining recipients (<4CFF; N=272). The incidence of procedural and immunosuppression-related SAEs per recipient that resulted in sequelae, disability or death was low in both the 4CFF (0.056 per person) and <4CFF (0.074 per person) groups. CONCLUSIONS/INTERPRETATION: In recipients with type 1 diabetes complicated by SHEs, islet transplantation meeting 4CFF protected 95% from SHEs at 5 years after the last islet infusion and exerted a large and significant benefit on glycaemic control, with an acceptable safety profile for this subgroup of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Humans , Adult , Islets of Langerhans Transplantation/adverse effects
4.
Am J Physiol Endocrinol Metab ; 324(4): E347-E357, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36791324

ABSTRACT

Thrombospondin-1 (TSP1) is a secreted protein minimally expressed in health but increased in disease and age. TSP1 binds to the cell membrane receptor CD47, which itself engages signal regulatory protein α (SIRPα), and the latter creates a checkpoint for immune activation. Individuals with cancer administered checkpoint-blocking molecules developed insulin-dependent diabetes. Relevant to this, CD47 blocking antibodies and SIRPα fusion proteins are in clinical trials. We characterized the molecular signature of TSP1, CD47, and SIRPα in human islets and pancreata. Fresh islets and pancreatic tissue from nondiabetic individuals were obtained. The expression of THBS1, CD47, and SIRPA was determined using single-cell mRNA sequencing, immunofluorescence microscopy, Western blot, and flow cytometry. Islets were exposed to diabetes-affiliated inflammatory cytokines and changes in protein expression were determined. CD47 mRNA was expressed in all islet cell types. THBS1 mRNA was restricted primarily to endothelial and mesenchymal cells, whereas SIRPA mRNA was found mostly in macrophages. Immunofluorescence staining showed CD47 protein expressed by ß cells and present in the exocrine pancreas. TSP1 and SIRPα proteins were not seen in islets or the exocrine pancreas. Western blot and flow cytometry confirmed immunofluorescent expression patterns. Importantly, human islets produced substantial quantities of secreted TSP1. Human pancreatic exocrine and endocrine tissue expressed CD47, whereas fresh islets displayed cell surface CD47 and secreted TSP1 at baseline and in inflammation. These findings suggest unexpected effects on islets from agents that intersect TSP1-CD47-SIRPα.NEW & NOTEWORTHY CD47 is a cell surface receptor with two primary ligands, soluble thrombospondin-1 (TSP1) and cell surface signal regulatory protein alpha (SIRPα). Both interactions provide checkpoints for immune cell activity. We determined that fresh human islets display CD47 and secrete TSP1. However, human islet endocrine cells lack SIRPα. These gene signatures are likely important given the increasing use of CD47 and SIRPα blocking molecules in individuals with cancer.


Subject(s)
CD47 Antigen , Neoplasms , Humans , CD47 Antigen/genetics , CD47 Antigen/metabolism , Macrophages/metabolism , Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Thrombospondins/metabolism , Thrombospondins/therapeutic use , Thrombospondin 1/genetics , Thrombospondin 1/metabolism
5.
Molecules ; 28(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513205

ABSTRACT

The regulation of bile acid pathways has become a particularly promising therapeutic strategy for a variety of metabolic disorders, cancers, and diseases. However, the hydrophobicity of bile acids has been an obstacle to clinical efficacy due to off-target effects from rapid drug absorption. In this report, we explored a novel strategy to design new structure fragments based on lithocholic acid (LCA) with improved hydrophilicity by introducing a polar "oxygen atom" into the side chain of LCA, then (i) either retaining the carboxylic acid group or replacing the carboxylic acid group with (ii) a diol group or (iii) a vinyl group. These novel fragments were evaluated using luciferase-based reporter assays and the MTS assay. Compared to LCA, the result revealed that the two lead compounds 1a-1b were well tolerated in vitro, maintaining similar potency and efficacy to LCA. The MTS assay results indicated that cell viability was not affected by dose dependence (under 25 µM). Additionally, computational model analysis demonstrated that compounds 1a-1b formed more extensive hydrogen bond networks with Takeda G protein-coupled receptor 5 (TGR5) than LCA. This strategy displayed a potential approach to explore the development of novel endogenous bile acids fragments. Further evaluation on the biological activities of the two lead compounds is ongoing.


Subject(s)
Bile Acids and Salts , Lithocholic Acid , Lithocholic Acid/pharmacology , Bile Acids and Salts/pharmacology
6.
J Natl Compr Canc Netw ; 20(8): 925-951, 2022 08.
Article in English | MEDLINE | ID: mdl-35948029

ABSTRACT

Differentiated thyroid carcinomas is associated with an excellent prognosis. The treatment of choice for differentiated thyroid carcinoma is surgery, followed by radioactive iodine ablation (iodine-131) in select patients and thyroxine therapy in most patients. Surgery is also the main treatment for medullary thyroid carcinoma, and kinase inhibitors may be appropriate for select patients with recurrent or persistent disease that is not resectable. Anaplastic thyroid carcinoma is almost uniformly lethal, and iodine-131 imaging and radioactive iodine cannot be used. When systemic therapy is indicated, targeted therapy options are preferred. This article describes NCCN recommendations regarding management of medullary thyroid carcinoma and anaplastic thyroid carcinoma, and surgical management of differentiated thyroid carcinoma (papillary, follicular, Hürthle cell carcinoma).


Subject(s)
Adenocarcinoma , Iodine , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Adenocarcinoma/drug therapy , Carcinoma, Neuroendocrine , Humans , Iodine/therapeutic use , Iodine Radioisotopes/therapeutic use , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/therapy
7.
Am J Transplant ; 21(4): 1365-1375, 2021 04.
Article in English | MEDLINE | ID: mdl-33251712

ABSTRACT

Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and "more than minimally manipulated" human cell and tissue products (HCT/Ps). In contrast, across the world, human islets are appropriately defined as "minimally manipulated tissue" and not regulated as a drug, which has led to islet allotransplantation (allo-ITx) becoming a standard-of-care procedure for selected patients with type 1 diabetes mellitus. This regulatory distinction impedes patient access to islets for transplantation in the US. As a result only 11 patients underwent allo-ITx in the US between 2016 and 2019, and all as investigational procedures in the settings of a clinical trials. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States.


Subject(s)
Biological Products , Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Costs and Cost Analysis , Diabetes Mellitus, Type 1/surgery , Humans , Transplantation, Heterologous , United States
8.
J Natl Compr Canc Netw ; 19(7): 839-868, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34340212

ABSTRACT

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Neuroendocrine and Adrenal Gland Tumors focus on the diagnosis, treatment, and management of patients with neuroendocrine tumors (NETs), adrenal tumors, pheochromocytomas, paragangliomas, and multiple endocrine neoplasia. NETs are generally subclassified by site of origin, stage, and histologic characteristics. Appropriate diagnosis and treatment of NETs often involves collaboration between specialists in multiple disciplines, using specific biochemical, radiologic, and surgical methods. Specialists include pathologists, endocrinologists, radiologists (including nuclear medicine specialists), and medical, radiation, and surgical oncologists. These guidelines discuss the diagnosis and management of both sporadic and hereditary neuroendocrine and adrenal tumors and are intended to assist with clinical decision-making. This article is focused on the 2021 NCCN Guidelines principles of genetic risk assessment and counseling and recommendations for well-differentiated grade 3 NETs, poorly differentiated neuroendocrine carcinomas, adrenal tumors, pheochromocytomas, and paragangliomas.


Subject(s)
Adrenal Gland Neoplasms , Neuroendocrine Tumors , Adrenal Gland Neoplasms/diagnosis , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/therapy , Humans , Medical Oncology , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy
9.
Molecules ; 26(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800801

ABSTRACT

Diabetes remains one of the fastest growing chronic diseases and is a leading source of morbidity and accelerated mortality in the world. Loss of beta cell mass (BCM) and decreased sensitivity to insulin underlie diabetes pathogenesis. Yet, the ability to safely and directly assess BCM in individuals with diabetes does not exist. Measures such as blood glucose provide only a crude indirect picture of beta cell health. PET imaging could, in theory, allow for safe, direct, and precise characterization of BCM. However, identification of beta cell-specific radiolabeled tracers remains elusive. G-protein coupled receptor 44 (GPR44) is a transmembrane protein that was characterized in 2012 as highly beta cell-specific within the insulin-positive islets of Langerhans. Accordingly, radiolabeling of existing GPR44 antagonists could be a viable method to accelerate PET tracer development. The present study aims to evaluate and summarize published analogues of the GPR44 antagonist ramatroban to develop 18F-labeled PET tracers for BCM analysis. The 77 corresponding ramatroban analogues containing a fluorine nuclide were characterized for properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile, and 32 compounds with favorable properties were identified. This review illustrates the potential of GPR44 analogues for the development of PET tracers.


Subject(s)
Carbazoles/chemistry , Fluorine Radioisotopes/metabolism , Insulin-Secreting Cells/metabolism , Positron-Emission Tomography/methods , Radioactive Tracers , Radiopharmaceuticals/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Sulfonamides/chemistry , Humans , Insulin-Secreting Cells/chemistry , Insulin-Secreting Cells/cytology , Platelet Aggregation Inhibitors/chemistry
10.
Microvasc Res ; 132: 104070, 2020 11.
Article in English | MEDLINE | ID: mdl-32890600

ABSTRACT

PURPOSE: Subcutaneous tissue is a promising site for cell transplantation; advantages include minimally invasive procedures and easy post-transplant monitoring. However, limited vascularity is the major known challenge. To address this challenge, a prevascularized graft bed is prepared in recipients. We aimed to establish an improved, clinically applicable approach to promote prevascularization of the subcutaneous graft bed prior to cell transplantation. METHODS: We applied a conventional prevascularization approach by subcutaneously implanting nylon discs into the backs of Lewis rats. After disc implantation, we treated rats with or without intermittent normobaric 100% oxygen inhalation (1 h, twice a day, for consecutive 7 days). We used histology to compare vascular density between the oxygen-treated or control groups. To assess the functional effects of prevascularization, we transplanted three hundred islets isolated from luciferase-transgenic Lewis rats into the oxygen-treated or control wild type Lewis recipients, then used bioluminescence imaging to track engraftment for 4 weeks. RESULTS: Oxygen treatment significantly augmented prevascularization in the subcutaneous site compared to controls. Islet transplantation into prevascularized graft beds demonstrated significant improvement in engraftment efficiency in oxygen-treated recipients compared to controls at 2-4 weeks post-transplantation. CONCLUSION: Combining intermittent normobaric 100% oxygen inhalation with a conventional vascularization approach promotes a functional vasculature within a week. A simple approach using normobaric oxygen has the potential for translation into clinical application in subcutaneous site cell transplantations.


Subject(s)
Graft Survival , Islets of Langerhans Transplantation , Neovascularization, Physiologic , Oxygen/administration & dosage , Subcutaneous Tissue/blood supply , Transplantation Conditioning/methods , Administration, Inhalation , Animals , Drug Administration Schedule , Rats, Inbred Lew , Time Factors
11.
Transpl Int ; 33(7): 806-818, 2020 07.
Article in English | MEDLINE | ID: mdl-32198960

ABSTRACT

Pancreatic islet transplantation into the liver is an effective treatment for type 1 diabetes but has some critical limitations. The subcutaneous site is a potential alternative transplant site, requiring minimally invasive procedures and allowing frequent graft monitoring; however, hypoxia is a major drawback. Our previous study without scaffolding demonstrated post-transplant graft aggregation in the subcutaneous site, which theoretically exacerbates lethal intra-graft hypoxia. In this study, we introduce a clinically applicable subcutaneous islet transplantation platform using a biodegradable Vicryl mesh scaffold to prevent aggregation in a diabetic rat model. Islets were sandwiched between layers of clinically proven Vicryl mesh within thrombin-fibrin gel. In vitro, the mesh prevented islet aggregation and intra-islet hypoxia, which significantly improved islet viability. In vivo rat syngeneic islet transplantations into a prevascularized subcutaneous pocket demonstrated that the mesh significantly enhanced engraftment, as measured by assays for graft survival and function. Histological examination at 6 weeks showed well-vascularized grafts sandwiched in a flat shape between the mesh layers. The biodegradable mesh was fully absorbed by three months, which alleviated chronic foreign body reaction and fibrosis, and supported long-term graft maintenance. This simple graft shape modification approach is an effective and clinically applicable strategy for improved subcutaneous islet transplantation.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Blood Glucose , Diabetes Mellitus, Experimental/surgery , Graft Survival , Polyglactin 910 , Rats , Surgical Mesh
12.
Bioorg Chem ; 98: 103718, 2020 05.
Article in English | MEDLINE | ID: mdl-32171991

ABSTRACT

A major limitation in the development of radiolabeled Exendin-4 analogues (short half-life isotopes) is an inability to efficiently and rapidly separate final products from precursors. This is important as lack of purity in the final product decreases probe efficiency. The purpose of this study was to develop a method to prepare the high-purity imaging reagent [18F] PTTCO-Cys40-Exendin-4. To accomplish this, magnetic TCO-beads were incubated with the crude product to remove unlabeled Exendin-4. In rodents pre-treatment with purified [18F] PTTCO-Cys40-Exendin-4 (~1.85 MBq) allowed precise microPET imaging of ectopic insulinomas. Moreover, analogue uptake was successfully blocked by administering non-labelled "cold" Exendin-4. Biodistribution data revealed that [18F] PTTCO-Cys40-Exendin-4 accumulated specifically in GLP-1R-enriched insulinomas in mice, confirming results obtained using miroPET. Investigation of [18F] PTTCO-Cys40-Exendin-4 as a tracer to image portal vein-transplanted pancreatic islets is proceeding in animals.


Subject(s)
Contrast Media/chemistry , Insulinoma/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Positron-Emission Tomography , Animals , Cell Line, Tumor , Contrast Media/chemical synthesis , Dose-Response Relationship, Drug , Fluorine Radioisotopes , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Rats , Structure-Activity Relationship
13.
Curr Opin Nephrol Hypertens ; 28(1): 47-57, 2019 01.
Article in English | MEDLINE | ID: mdl-30418189

ABSTRACT

PURPOSE OF REVIEW: The leading cause of death in both chronic kidney disease (CKD) and renal transplant patients is cardiovascular events. Post-transplant diabetes mellitus (PTx-DM), which is a major cardiovascular risk factor, is a metabolic disorder that affects 5.5-60.2% of renal allograft recipients by 1-year posttransplant (PTx). PTx-DM has been associated with a negative impact on patient and graft outcomes and survival. RECENT FINDINGS: Individuals who develop PTx-DM are usually prone to this condition prior to and/or after developing CKD. Genetic factors, obesity, inflammation, medications and CKD all are risk factors for PTx-diabetes mellitus. The path to development of disease continues PTx frequently augmented by the use of diabetogenic maintenance immunosuppressive and some nonimmunosuppressive medications. These risk factors are usually associated with an increase in insulin resistance, a decrease in insulin gene expression and/or ß-cell dysfunction and apoptosis. SUMMARY: Some new anti-diabetes mellitus medications may help to improve the overall outcome; however, there is a real need for developing a preventive strategy. Identifying and targeting PTx-DM risk factors may help to guide the development of an effective programme. This could include the adoption of nondiabetogenic immunosuppressive protocols for high-risk patients.


Subject(s)
Diabetes Mellitus/etiology , Kidney Transplantation/adverse effects , Humans , Immunosuppressive Agents/therapeutic use , Insulin Resistance , Renal Insufficiency, Chronic/complications
14.
Am J Transplant ; 18(8): 2068-2074, 2018 08.
Article in English | MEDLINE | ID: mdl-29673066

ABSTRACT

Chronic pancreatitis (CP) is a severely disabling disorder with potential detrimental effects on quality of life, gut function, and glucose homeostasis. Disease progression often results in irreversible morphological and functional abnormalities with development of chronic pain, mechanical obstruction, and pancreatic insufficiency. Along with comprehensive medical management, the concept of total pancreatectomy and islet autotransplantation (TP-AIT) was introduced 40 years ago for patients with intractable pain and preserved beta-cell function. With anticipated technical difficulties, total excision of the inflamed-disfigured gland is expected to alleviate the incapacitating visceral pain and correct other associated abdominal pathology. With retrieval of sufficient islet-cell mass, the autologous transplant procedure has the potential to maintain an euglycemic state without exogenous insulin requirement. The reported herein case of CP-induced recalcitrant pain and foregut obstruction is exceptional because of the technical challenges in performing native pancreaticoduodenectomy in close proximity to the composite visceral allograft with complex vascular and gut reconstructions. Equally novel is transplanting the auto-islets in the liver-contained visceral allograft. Despite intravenous nutrition shortly after birth, liver transplantation at age 13, retransplantation with liver-contained visceral allograft at age 17 and TP-AIT at age 31, the 38-year-old recipient is currently pain free with full nutritional autonomy and normal glucose homeostasis.


Subject(s)
Islets of Langerhans Transplantation/methods , Liver Failure/surgery , Liver Transplantation/adverse effects , Pancreaticoduodenectomy/methods , Pancreatitis, Chronic/therapy , Quality of Life , Adult , Humans , Male , Pancreatitis, Chronic/etiology , Transplantation, Autologous , Treatment Outcome
15.
J Natl Compr Canc Netw ; 16(12): 1429-1440, 2018 12.
Article in English | MEDLINE | ID: mdl-30545990

ABSTRACT

The NCCN Guidelines for Thyroid Carcinoma provide recommendations for the management of different types of thyroid carcinoma, including papillary, follicular, Hürthle cell, medullary, and anaplastic carcinomas. These NCCN Guidelines Insights summarize the panel discussion behind recent updates to the guidelines, including the expanding role of molecular testing for differentiated thyroid carcinoma, implications of the new pathologic diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features, and the addition of a new targeted therapy option for BRAF V600E-mutated anaplastic thyroid carcinoma.


Subject(s)
Carcinoma/therapy , Medical Oncology/standards , Thyroid Neoplasms/therapy , Antineoplastic Combined Chemotherapy Protocols/standards , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma/diagnosis , Carcinoma/mortality , Carcinoma/pathology , Clinical Trials as Topic , Humans , Image-Guided Biopsy/methods , Image-Guided Biopsy/standards , Neoplasm Staging , Prognosis , Protein Kinase Inhibitors/standards , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Societies, Medical/standards , Thyroid Gland/diagnostic imaging , Thyroid Gland/pathology , Thyroid Gland/surgery , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroidectomy/methods , Thyroidectomy/standards , Treatment Outcome , United States
16.
J Natl Compr Canc Netw ; 16(6): 693-702, 2018 06.
Article in English | MEDLINE | ID: mdl-29891520

ABSTRACT

The NCCN Guidelines for Neuroendocrine and Adrenal Tumors provide recommendations for the management of adult patients with neuroendocrine tumors (NETs), adrenal gland tumors, pheochromocytomas, and paragangliomas. Management of NETs relies heavily on the site of the primary NET. These NCCN Guidelines Insights summarize the management options and the 2018 updates to the guidelines for locoregional advanced disease, and/or distant metastasis originating from gastrointestinal tract, bronchopulmonary, and thymus primary NETs.


Subject(s)
Adrenal Gland Neoplasms/therapy , Delivery of Health Care, Integrated/standards , Medical Oncology/standards , Neuroendocrine Tumors/therapy , Adrenal Gland Neoplasms/diagnosis , Adult , Humans , Neuroendocrine Tumors/diagnosis , Societies, Medical/standards , United States
17.
Cell Tissue Bank ; 19(1): 77-85, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28916910

ABSTRACT

Islet transplantation has made major progress to treat patients with type 1 diabetes. Islet mass and quality are critically important to ensure successful transplantation. Currently, islet status is evaluated using insulin secretion, oxygen consumption rate, or adenosine triphosphate (ATP) measurement. These parameters are evaluated independently and do not effectively predict islet status post-transplant. Therefore, assessing human pancreatic islets by encompassing ATP, DNA, insulin, and protein content from a single tissue sample would serve as a better predictor for islet status. In this study, a single step procedure for extracting ATP, DNA, insulin, and protein content from human pancreatic islets was described and the biomolecule contents were quantified. Additionally, different mathematical calculations integrating total ATP, DNA, insulin, and protein content were randomly tested under various conditions to predict islet status. The results demonstrated that the ATP assay was efficient and the biomolecules were effectively quantified. Furthermore, the mathematical formula we developed could be optimized to predict islet status. In conclusion, our results indicate a proof-of-concept that a simple logarithmic formula can predict overall islet status for various conditions when total islet ATP, DNA, insulin, and protein content are simultaneously assessed from a single tissue sample.


Subject(s)
Adenosine Triphosphate/analysis , DNA/analysis , Insulin/analysis , Islets of Langerhans/chemistry , Algorithms , Humans , Islets of Langerhans Transplantation , Models, Biological , Organ Culture Techniques
18.
Biochem Biophys Res Commun ; 486(3): 817-823, 2017 05 06.
Article in English | MEDLINE | ID: mdl-28351620

ABSTRACT

BACKGROUND/AIMS: Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. METHODS: Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. RESULTS: Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism and better function among the conditions examined. CONCLUSION: Oxygenated thawing/rewarming alleviated islet volume loss, with the help of oxygenated culture.


Subject(s)
Cryopreservation/methods , Islets of Langerhans/drug effects , Oxygen/pharmacology , Cell Survival/drug effects , Cryoprotective Agents/pharmacology , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation , Primary Cell Culture , Rewarming/methods
19.
Am J Physiol Endocrinol Metab ; 310(11): E1016-26, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27117005

ABSTRACT

Long-term pancreatic cold ischemia contributes to decreased islet number and viability after isolation and culture, leading to poor islet transplantation outcome in patients with type 1 diabetes. In this study, we examined mechanisms of pancreatic cold preservation and rewarming-induced injury by interrogating the proapoptotic gene BBC3/Bbc3, also known as Puma (p53 upregulated modulator of apoptosis), using three experimental models: 1) bioluminescence imaging of isolated luciferase-transgenic ("Firefly") Lewis rat islets, 2) cold preservation of en bloc-harvested pancreata from Bbc3-knockout (KO) mice, and 3) cold preservation and rewarming of human pancreata and isolated islets. Cold preservation-mediated islet injury occurred during rewarming in "Firefly" islets. Silencing Bbc3 by transfecting Bbc3 siRNA into islets in vitro prior to cold preservation improved postpreservation mitochondrial viability. Cold preservation resulted in decreased postisolation islet yield in both wild-type and Bbc3 KO pancreata. However, after culture, the islet viability was significantly higher in Bbc3-KO islets, suggesting that different mechanisms are involved in islet damage/loss during isolation and culture. Furthermore, Bbc3-KO islets from cold-preserved pancreata showed reduced HMGB1 (high-mobility group box 1 protein) expression and decreased levels of 4-hydroxynonenal (4-HNE) protein adducts, which was indicative of reduced oxidative stress. During human islet isolation, BBC3 protein was upregulated in digested tissue from cold-preserved pancreata. Hypoxia in cold preservation increased BBC3 mRNA and protein in isolated human islets after rewarming in culture and reduced islet viability. These results demonstrated the involvement of BBC3/Bbc3 in cold preservation/rewarming-mediated islet injury, possibly through modulating HMGB1- and oxidative stress-mediated injury to islets.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cell Survival/physiology , Cryopreservation/methods , Islets of Langerhans/injuries , Islets of Langerhans/physiopathology , Proto-Oncogene Proteins/metabolism , Rewarming/adverse effects , Animals , Cells, Cultured , Humans , Oxidative Stress/physiology , Rats , Rats, Inbred Lew
20.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G675-G687, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27609771

ABSTRACT

Epidemiological studies support strong links between obesity, diabetes, and pancreatic disorders including pancreatitis and pancreatic adenocarcinoma (PDAC). Type 2 diabetes (T2DM) is associated with insulin resistance, hyperglycemia, and hyperinsulinemia, the latter due to increased insulin secretion by pancreatic beta-cells. We reported that high-fat diet-induced PDAC progression in mice is associated with hyperglycemia, hyperinsulinemia, and activation of pancreatic stellate cells (PaSC). We investigated here the effects of high concentrations of insulin and glucose on mouse and human PaSC growth and fibrosing responses. We found that compared with normal, pancreata from T2DM patients displayed extensive collagen deposition and activated PaSC in islet and peri-islet exocrine pancreas. Mice fed a high-fat diet for up to 12 mo similarly displayed increasing peri-islet fibrosis compared with mice fed control diet. Both quiescent and activated PaSC coexpress insulin (IR; mainly A type) and IGF (IGF-1R) receptors, and both insulin and glucose modulate receptor expression. In cultured PaSC, insulin induced rapid tyrosine autophosphorylation of IR/IGF-1R at specific kinase domain activation loop sites, activated Akt/mTOR/p70S6K signaling, and inactivated FoxO1, a transcription factor that restrains cell growth. Insulin did not promote activation of quiescent PaSC in either 5 mM or 25 mM glucose containing media. However, in activated PaSC, insulin enhanced cell proliferation and augmented production of extracellular matrix proteins, and these effects were abolished by specific inhibition of mTORC1 and mTORC2. In conclusion, our data support the concept that increased local glucose and insulin concentrations associated with obesity and T2DM promote PaSC growth and fibrosing responses.


Subject(s)
Cell Proliferation/drug effects , Diabetes Mellitus, Type 2/pathology , Fibrosis/pathology , Glucose/pharmacology , Insulin/pharmacology , Pancreatic Stellate Cells/drug effects , Animals , Cells, Cultured , Collagen/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Female , Fibrosis/metabolism , Humans , Mice , Middle Aged , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/pathology , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Phosphorylation/drug effects , Receptor, IGF Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL