Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Immunol ; 203(8): 2076-2087, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31534007

ABSTRACT

The imbalanced redox status in lung has been widely implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. To regulate redox status, hydrogen peroxide must be adequately reduced to water by glutathione peroxidases (GPx). Among GPx isoforms, GPx4 is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide. Increased lipid peroxidation products have been demonstrated in IPF lungs, suggesting the participation of imbalanced lipid peroxidation in IPF pathogenesis, which can be modulated by GPx4. In this study, we sought to examine the involvement of GPx4-modulated lipid peroxidation in regulating TGF-ß-induced myofibroblast differentiation. Bleomycin-induced lung fibrosis development in mouse models with genetic manipulation of GPx4 were examined. Immunohistochemical evaluations for GPx4 and lipid peroxidation were performed in IPF lung tissues. Immunohistochemical evaluations showed reduced GPx4 expression levels accompanied by increased 4-hydroxy-2-nonenal in fibroblastic focus in IPF lungs. TGF-ß-induced myofibroblast differentiation was enhanced by GPx4 knockdown with concomitantly enhanced lipid peroxidation and SMAD2/SMAD3 signaling. Heterozygous GPx4-deficient mice showed enhancement of bleomycin-induced lung fibrosis, which was attenuated in GPx4-transgenic mice in association with lipid peroxidation and SMAD signaling. Regulating lipid peroxidation by Trolox showed efficient attenuation of bleomycin-induced lung fibrosis development. These findings suggest that increased lipid peroxidation resulting from reduced GPx4 expression levels may be causally associated with lung fibrosis development through enhanced TGF-ß signaling linked to myofibroblast accumulation of fibroblastic focus formation during IPF pathogenesis. It is likely that regulating lipid peroxidation caused by reduced GPx4 can be a promising target for an antifibrotic modality of treatment for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Bleomycin , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lipid Peroxidation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myofibroblasts/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/deficiency , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Transforming Growth Factor beta/metabolism
2.
J Immunol ; 202(5): 1428-1440, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30692212

ABSTRACT

Downregulation of lamin B1 has been recognized as a crucial step for development of full senescence. Accelerated cellular senescence linked to mechanistic target of rapamycin kinase (MTOR) signaling and accumulation of mitochondrial damage has been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. We hypothesized that lamin B1 protein levels are reduced in COPD lungs, contributing to the process of cigarette smoke (CS)-induced cellular senescence via dysregulation of MTOR and mitochondrial integrity. To illuminate the role of lamin B1 in COPD pathogenesis, lamin B1 protein levels, MTOR activation, mitochondrial mass, and cellular senescence were evaluated in CS extract (CSE)-treated human bronchial epithelial cells (HBEC), CS-exposed mice, and COPD lungs. We showed that lamin B1 was reduced by exposure to CSE and that autophagy was responsible for lamin B1 degradation in HBEC. Lamin B1 reduction was linked to MTOR activation through DEP domain-containing MTOR-interacting protein (DEPTOR) downregulation, resulting in accelerated cellular senescence. Aberrant MTOR activation was associated with increased mitochondrial mass, which can be attributed to peroxisome proliferator-activated receptor γ coactivator-1ß-mediated mitochondrial biogenesis. CS-exposed mouse lungs and COPD lungs also showed reduced lamin B1 and DEPTOR protein levels, along with MTOR activation accompanied by increased mitochondrial mass and cellular senescence. Antidiabetic metformin prevented CSE-induced HBEC senescence and mitochondrial accumulation via increased DEPTOR expression. These findings suggest that lamin B1 reduction is not only a hallmark of lung aging but is also involved in the progression of cellular senescence during COPD pathogenesis through aberrant MTOR signaling.


Subject(s)
Cellular Senescence/immunology , Lamin Type B/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Cellular Senescence/genetics , Humans , Lamin Type B/genetics , Oxidation-Reduction , Pulmonary Disease, Chronic Obstructive/pathology , Tumor Cells, Cultured
3.
J Immunol ; 197(2): 504-16, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27279371

ABSTRACT

Fibroblastic foci, known to be the leading edge of fibrosis development in idiopathic pulmonary fibrosis (IPF), are composed of fibrogenic myofibroblasts. Autophagy has been implicated in the regulation of myofibroblast differentiation. Insufficient mitophagy, the mitochondria-selective autophagy, results in increased reactive oxygen species, which may modulate cell signaling pathways for myofibroblast differentiation. Therefore, we sought to investigate the regulatory role of mitophagy in myofibroblast differentiation as a part of IPF pathogenesis. Lung fibroblasts were used in in vitro experiments. Immunohistochemical evaluation in IPF lung tissues was performed. PARK2 was examined as a target molecule for mitophagy regulation, and a PARK2 knockout mouse was employed in a bleomycin-induced lung fibrosis model. We demonstrated that PARK2 knockdown-mediated mitophagy inhibition was involved in the mechanism for activation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway accompanied by enhanced myofibroblast differentiation and proliferation, which were clearly inhibited by treatment with both antioxidants and AG1296, a PDGFR inhibitor. Mitophagy inhibition-mediated activation of PDGFR signaling was responsible for further autophagy suppression, suggesting the existence of a self-amplifying loop of mitophagy inhibition and PDGFR activation. IPF lung demonstrated reduced PARK2 with concomitantly increased PDGFR phosphorylation. Furthermore, bleomycin-induced lung fibrosis was enhanced in PARK2 knockout mice and subsequently inhibited by AG1296. These findings suggest that insufficient mitophagy-mediated PDGFR/PI3K/AKT activation, which is mainly attributed to reduced PARK2 expression, is a potent underlying mechanism for myofibroblast differentiation and proliferation in fibroblastic foci formation during IPF pathogenesis.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Mitophagy/physiology , Myofibroblasts/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Blotting, Western , Cell Differentiation/physiology , Fluorescent Antibody Technique , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/physiology
4.
BMC Pulm Med ; 18(1): 4, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29316890

ABSTRACT

BACKGROUND: Postoperative pulmonary complications (PPC) in patients with pulmonary diseases remain to be resolved clinical issue. However, most evidence regarding PPC has been established more than 10 years ago. Therefore, it is necessary to evaluate perioperative management using new inhalant drugs in patients with obstructive pulmonary diseases. METHODS: April 2014 through March 2015, 346 adult patients with pulmonary diseases (257 asthma, 89 chronic obstructive pulmonary disease (COPD)) underwent non-pulmonary surgery except cataract surgery in our university hospital. To analyze the risk factors for PPC, we retrospectively evaluated physiological backgrounds, surgical factors and perioperative specific treatment for asthma and COPD. RESULTS: Finally, 29 patients with pulmonary diseases (22 asthma, 7 COPD) had PPC. In patients with asthma, smoking index (≥ 20 pack-years), peripheral blood eosinophil count (≥ 200/mm3) and severity (Global INitiative for Asthma(GINA) STEP ≥ 3) were significantly associated with PPC in the multivariate logistic regression analysis [odds ratio (95% confidence interval) = 5.4(1.4-20.8), 0.31 (0.11-0.84) and 3.2 (1.04-9.9), respectively]. In patients with COPD, age, introducing treatment for COPD, upper abdominal surgery and operation time (≥ 5 h) were significantly associated with PPC [1.18 (1.00-1.40), 0.09 (0.01-0.81), 21.2 (1.3-349) and 9.5 (1.2-77.4), respectively]. CONCLUSIONS: History of smoking or severe asthma is a risk factor of PPC in patients with asthma, and age, upper abdominal surgery, or long operation time is a risk factor of PPC in patients with COPD. Adequate inhaled corticosteroids treatment in patients with eosinophilic asthma and introducing treatment for COPD in patients with COPD could reduce PPCs.


Subject(s)
Asthma/epidemiology , Neutrophils , Postoperative Complications/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Abdomen/surgery , Adult , Age Factors , Aged , Aged, 80 and over , Asthma/blood , Asthma/physiopathology , Female , Humans , Leukocyte Count , Male , Middle Aged , Operative Time , Pulmonary Disease, Chronic Obstructive/drug therapy , Retrospective Studies , Risk Factors , Severity of Illness Index , Smoking/epidemiology , Young Adult
5.
Respir Res ; 18(1): 114, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28577568

ABSTRACT

BACKGROUND: Pirfenidone (PFD) is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis (IPF), but its precise mechanism of action remains elusive. Accumulation of profibrotic myofibroblasts is a crucial process for fibrotic remodeling in IPF. Recent findings show participation of autophagy/mitophagy, part of the lysosomal degradation machinery, in IPF pathogenesis. Mitophagy has been implicated in myofibroblast differentiation through regulating mitochondrial reactive oxygen species (ROS)-mediated platelet-derived growth factor receptor (PDGFR) activation. In this study, the effect of PFD on autophagy/mitophagy activation in lung fibroblasts (LF) was evaluated, specifically the anti-fibrotic property of PFD for modulation of myofibroblast differentiation during insufficient mitophagy. METHODS: Transforming growth factor-ß (TGF-ß)-induced or ATG5, ATG7, and PARK2 knockdown-mediated myofibroblast differentiation in LF were used for in vitro models. The anti-fibrotic role of PFD was examined in a bleomycin (BLM)-induced lung fibrosis model using PARK2 knockout (KO) mice. RESULTS: We found that PFD induced autophagy/mitophagy activation via enhanced PARK2 expression, which was partly involved in the inhibition of myofibroblast differentiation in the presence of TGF-ß. PFD inhibited the myofibroblast differentiation induced by PARK2 knockdown by reducing mitochondrial ROS and PDGFR-PI3K-Akt activation. BLM-treated PARK2 KO mice demonstrated augmentation of lung fibrosis and oxidative modifications compared to those of BLM-treated wild type mice, which were efficiently attenuated by PFD. CONCLUSIONS: These results suggest that PFD induces PARK2-mediated mitophagy and also inhibits lung fibrosis development in the setting of insufficient mitophagy, which may at least partly explain the anti-fibrotic mechanisms of PFD for IPF treatment.


Subject(s)
Antioxidants/pharmacology , Cell Differentiation/drug effects , Lung/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Myofibroblasts/drug effects , Pulmonary Fibrosis/drug therapy , Pyridones/pharmacology , Animals , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Bleomycin , Cells, Cultured , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA Interference , Reactive Oxygen Species/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Respir Res ; 17(1): 107, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27576730

ABSTRACT

BACKGROUND: Accumulation of profibrotic myofibroblasts in fibroblastic foci (FF) is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis (IPF) pathogenesis, and transforming growth factor (TGF)-ß plays a key regulatory role in myofibroblast differentiation. Reactive oxygen species (ROS) has been proposed to be involved in the mechanism for TGF-ß-induced myofibroblast differentiation. Metformin is a biguanide antidiabetic medication and its pharmacological action is mediated through the activation of AMP-activated protein kinase (AMPK), which regulates not only energy homeostasis but also stress responses, including ROS. Therefore, we sought to investigate the inhibitory role of metformin in lung fibrosis development via modulating TGF-ß signaling. METHODS: TGF-ß-induced myofibroblast differentiation in lung fibroblasts (LF) was used for in vitro models. The anti-fibrotic role of metfromin was examined in a bleomycin (BLM)-induced lung fibrosis model. RESULTS: We found that TGF-ß-induced myofibroblast differentiation was clearly inhibited by metformin treatment in LF. Metformin-mediated activation of AMPK was responsible for inhibiting TGF-ß-induced NOX4 expression. NOX4 knockdown and N-acetylcysteine (NAC) treatment illustrated that NOX4-derived ROS generation was critical for TGF-ß-induced SMAD phosphorylation and myofibroblast differentiation. BLM treatment induced development of lung fibrosis with concomitantly enhanced NOX4 expression and SMAD phosphorylation, which was efficiently inhibited by metformin. Increased NOX4 expression levels were also observed in FF of IPF lungs and LF isolated from IPF patients. CONCLUSIONS: These findings suggest that metformin can be a promising anti-fibrotic modality of treatment for IPF affected by TGF-ß.


Subject(s)
Idiopathic Pulmonary Fibrosis/prevention & control , Lung/drug effects , Metformin/pharmacology , Myofibroblasts/drug effects , NADPH Oxidase 4/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Bleomycin , Cell Differentiation/drug effects , Cells, Cultured , Cytoprotection , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/enzymology , Lung/pathology , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/pathology , NADPH Oxidase 4/genetics , Phosphorylation , RNA Interference , Reactive Oxygen Species/metabolism , Smad Proteins/metabolism , Time Factors , Transfection , Transforming Growth Factor beta/pharmacology
7.
J Immunol ; 192(3): 958-68, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24367027

ABSTRACT

Cigarette smoke (CS)-induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated ß-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling.


Subject(s)
Autophagy/physiology , Bronchi/pathology , Cellular Senescence/physiology , Epithelial Cells/pathology , Insulin-Like Growth Factor I/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Sirtuins/physiology , Smoke/adverse effects , Acetylation , Autophagy-Related Protein 5 , Cells, Cultured , Cellular Senescence/drug effects , Epithelial Cells/metabolism , Forced Expiratory Volume , Gene Expression Regulation/drug effects , Humans , Microtubule-Associated Proteins/physiology , Mutation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , RNA Interference , RNA, Small Interfering/pharmacology , Signal Transduction/physiology , Sirtuins/antagonists & inhibitors , Sirtuins/genetics , TOR Serine-Threonine Kinases/physiology , Nicotiana , Vital Capacity
8.
Rinsho Ketsueki ; 57(6): 736-41, 2016 06.
Article in Japanese | MEDLINE | ID: mdl-27384853

ABSTRACT

A 66-year-old woman with refractory angioimmunoblastic T-cell lymphoma underwent cord blood transplantation. Prior to transplantation, a serological test for Toxoplasma gondii-specific IgG antibodies was positive. On day 96, she exhibited fever and dry cough. Chest CT showed diffuse centrilobular ground glass opacities in both lungs. The reactivation of T. gondii was identified by the presence of parasite DNA in peripheral blood and bronchoalveolar lavage fluid. Moreover, brain MRI revealed a space occupying lesion in the right occipital lobe. Therefore, disseminated toxoplasmosis was diagnosed. She received pyrimethamine and sulfadiazine from day 99. The lung and brain lesions both showed improvement but the PCR assay for T. gondii DNA in peripheral blood was positive on day 133. On day 146, she developed blurred vision and reduced visual acuity, and a tentative diagnosis of toxoplasmic retinochoroiditis was made based on ophthalmic examination results. As agranulocytosis developed on day 158, we decided to discontinue pyrimethamine and sulfadiazine and the treatment was thus switched to atovaquone. Moreover, we added spiramycin to atovaquone therapy from day 174, and her ocular condition gradually improved. In general, the prognosis of disseminated toxoplasmosis after hematopoietic stem cell transplantation (HSCT) is extremely poor. However, early diagnosis and treatment may contribute to improvement of the fundamentally dismal prognosis of disseminated toxoplasmosis after HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Toxoplasmosis/drug therapy , Aged , Antiprotozoal Agents/therapeutic use , Drug Combinations , Early Diagnosis , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Toxoplasma/drug effects , Toxoplasmosis/diagnosis , Toxoplasmosis/etiology
9.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L737-46, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24056969

ABSTRACT

Mitochondria are dynamic organelles that continuously change their shape through fission and fusion. Disruption of mitochondrial dynamics is involved in disease pathology through excessive reactive oxygen species (ROS) production. Accelerated cellular senescence resulting from cigarette smoke exposure with excessive ROS production has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Hence, we investigated the involvement of mitochondrial dynamics and ROS production in terms of cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial morphology was examined by electron microscopy and fluorescence microscopy. Senescence-associated ß-galactosidase staining and p21 Western blotting of primary HBEC were performed to evaluate cellular senescence. Mitochondrial-specific superoxide production was measured by MitoSOX staining. Mitochondrial fragmentation was induced by knockdown of mitochondrial fusion proteins (OPA1 or Mitofusins) by small-interfering RNA transfection. N-acetylcysteine and Mito-TEMPO were used as antioxidants. Mitochondria in bronchial epithelial cells were prone to be more fragmented in COPD lung tissues. CSE induced mitochondrial fragmentation and mitochondrial ROS production, which were responsible for acceleration of cellular senescence in HBEC. Mitochondrial fragmentation induced by knockdown of fusion proteins also increased mitochondrial ROS production and percentages of senescent cells. HBEC senescence and mitochondria fragmentation in response to CSE treatment were inhibited in the presence of antioxidants. CSE-induced mitochondrial fragmentation is involved in cellular senescence through the mechanism of mitochondrial ROS production. Hence, disruption of mitochondrial dynamics may be a part of the pathogenic sequence of COPD development.


Subject(s)
Bronchi/pathology , Cellular Senescence/drug effects , Epithelial Cells/pathology , Mitochondria/pathology , Nicotiana/adverse effects , Reactive Oxygen Species/metabolism , Blotting, Western , Bronchi/drug effects , Bronchi/metabolism , Cells, Cultured , Dynamins , Epithelial Cells/drug effects , Epithelial Cells/metabolism , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Immunoenzyme Techniques , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA, Small Interfering/genetics
11.
Respir Res ; 14: 30, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23497247

ABSTRACT

BACKGROUND: Marked accumulation of alveolar macrophages (AM) conferred by apoptosis resistance has been implicated in pathogenesis of chronic obstructive pulmonary disease (COPD). Apoptosis inhibitor of macrophage (AIM), has been shown to be produced by mature tissue macrophages and AIM demonstrates anti-apoptotic property against multiple apoptosis-inducing stimuli. Accordingly, we attempt to determine if AIM is expressed in AM and whether AIM is involved in the regulation of apoptosis in the setting of cigarette smoke extract (CSE) exposure. METHODS: Immunohistochemical evaluations of AIM were performed. Immunostaining was assessed by counting total and positively staining AM numbers in each case (n = 5 in control, n = 5 in non-COPD smoker, n = 5 in COPD). AM were isolated from bronchoalveolar lavage fluid (BALF). The changes of AIM expression levels in response to CSE exposure in AM were evaluated. Knock-down of anti-apoptotic Bcl-xL was mediated by siRNA transfection. U937 monocyte-macrophage cell line was used to explore the anti-apoptotic properties of AIM. RESULTS: The numbers of AM and AIM-positive AM were significantly increased in COPD lungs. AIM expression was demonstrated at both mRNA and protein levels in isolated AM, which was enhanced in response to CSE exposure. AIM significantly increased Bcl-xL expression levels in AM and Bcl-xL was involved in a part of anti-apoptotic mechanisms of AIM in U937 cells in the setting of CSE exposure. CONCLUSIONS: These results suggest that AIM expression in association with cigarette smoking may be involved in accumulation of AM in COPD.


Subject(s)
Apoptosis Regulatory Proteins/biosynthesis , Gene Expression Regulation , Macrophages, Alveolar/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Antigens, CD/biosynthesis , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Antigens, Differentiation, T-Lymphocyte/genetics , Apoptosis Regulatory Proteins/genetics , Bronchoalveolar Lavage Fluid , Cells, Cultured , Female , HEK293 Cells , Humans , Lectins, C-Type/biosynthesis , Lectins, C-Type/genetics , Macrophages, Alveolar/pathology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , U937 Cells
12.
Nat Commun ; 10(1): 3145, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316058

ABSTRACT

Ferroptosis is a necrotic form of regulated cell death (RCD) mediated by phospholipid peroxidation in association with free iron-mediated Fenton reactions. Disrupted iron homeostasis resulting in excessive oxidative stress has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we demonstrate the involvement of ferroptosis in COPD pathogenesis. Our in vivo and in vitro models show labile iron accumulation and enhanced lipid peroxidation with concomitant non-apoptotic cell death during cigarette smoke (CS) exposure, which are negatively regulated by GPx4 activity. Treatment with deferoxamine and ferrostatin-1, in addition to GPx4 knockdown, illuminate the role of ferroptosis in CS-treated lung epithelial cells. NCOA4-mediated ferritin selective autophagy (ferritinophagy) is initiated during ferritin degradation in response to CS treatment. CS exposure models, using both GPx4-deficient and overexpressing mice, clarify the pivotal role of GPx4-regulated cell death during COPD. These findings support a role for cigarette smoke-induced ferroptosis in the pathogenesis of COPD.


Subject(s)
Ferroptosis , Pulmonary Disease, Chronic Obstructive/pathology , Smoking , Animals , Epithelial Cells/pathology , Humans , Iron/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Coactivators/genetics , Phospholipids/metabolism , Reactive Oxygen Species/metabolism
13.
Autophagy ; 15(3): 510-526, 2019 03.
Article in English | MEDLINE | ID: mdl-30290714

ABSTRACT

Cigarette smoke (CS)-induced accumulation of mitochondrial damage has been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Mitophagy plays a crucial role in eliminating damaged mitochondria, and is governed by the PINK1 (PTEN induced putative protein kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) pathway. Although both increased PINK1 and reduced PRKN have been implicated in COPD pathogenesis in association with mitophagy, there are conflicting reports for the role of mitophagy in COPD progression. To clarify the involvement of PRKN-regulated mitophagy in COPD pathogenesis, prkn knockout (KO) mouse models were used. To illuminate how PINK1 and PRKN regulate mitophagy in relation to CS-induced mitochondrial damage and cellular senescence, overexpression and knockdown experiments were performed in airway epithelial cells (AEC). In comparison to wild-type mice, prkn KO mice demonstrated enhanced airway wall thickening with emphysematous changes following CS exposure. AEC in CS-exposed prkn KO mice showed accumulation of damaged mitochondria and increased oxidative modifications accompanied by accelerated cellular senescence. In vitro experiments showed PRKN overexpression was sufficient to induce mitophagy during CSE exposure even in the setting of reduced PINK1 protein levels, resulting in attenuation of mitochondrial ROS production and cellular senescence. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, indicating that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy during CSE exposure. These results suggest that PRKN levels may play a pivotal role in COPD pathogenesis by regulating mitophagy, suggesting that PRKN induction could mitigate the progression of COPD. Abbreviations: AD: Alzheimer disease; AEC: airway epithelial cells; BALF: bronchoalveolar lavage fluid; AKT: AKT serine/threonine kinase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; COPD: chronic obstructive pulmonary disease; CS: cigarette smoke; CSE: CS extract; CXCL1: C-X-C motif chemokine ligand 1; CXCL8: C-X-C motif chemokine ligand 8; HBEC: human bronchial epithelial cells; 4-HNE: 4-hydroxynonenal; IL: interleukin; KO: knockout; LF: lung fibroblasts; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PCD: programmed cell death; PFD: pirfenidone; PIK3C: phosphatidylinositol-4:5-bisphosphate 3-kinase catalytic subunit; PINK1: PTEN induced putative kinase 1; PTEN: phosphatase and tensin homolog; RA: rheumatoid arthritis; ROS: reactive oxygen species; SA-GLB1/ß-Gal: senescence-associated-galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SNP: single nucleotide polymorphism; TNF: tumor necrosis factor.


Subject(s)
Cellular Senescence , Mitochondria/metabolism , Mitophagy , Pulmonary Disease, Chronic Obstructive/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cigarette Smoking/adverse effects , Disease Models, Animal , Epithelial Cells/metabolism , Humans , Lung/pathology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/ultrastructure , Mitophagy/drug effects , Mitophagy/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Pyridones/pharmacology , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics
14.
PLoS One ; 13(7): e0200790, 2018.
Article in English | MEDLINE | ID: mdl-30044827

ABSTRACT

Mesenchymal stem cells (MSCs) isolated from adult human tissues are capable of proliferating in vitro and maintaining their multipotency, making them attractive cell sources for regenerative medicine. However, the availability and capability of self-renewal under current preparation regimes are limited. Induced pluripotent stem cells (iPSCs) now offer an alternative, similar cell source to MSCs. Herein, we established new methods for differentiating hiPSCs into MSCs via mesoderm-like and neuroepithelium-like cells. Both derived MSC populations exhibited self-renewal and multipotency, as well as therapeutic potential in mouse models of skin wounds, pressure ulcers, and osteoarthritis. Interestingly, the therapeutic effects differ between the two types of MSCs in the disease models, suggesting that the therapeutic effect depends on the cell origin. Our results provide valuable basic insights for the clinical application of such cells.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods , Adipocytes/cytology , Animals , Cell Differentiation , Disease Models, Animal , Humans , Male , Mesoderm/metabolism , Mice , Oligonucleotide Array Sequence Analysis , Osteogenesis , Skin/metabolism
15.
Mayo Clin Proc Innov Qual Outcomes ; 2(4): 370-377, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30560239

ABSTRACT

OBJECTIVE: To investigate the relationship between psoriasis and interstitial pneumonia (IP). PATIENTS AND METHODS: We analyzed the clinical data of patients with psoriasis treated with biologic agents from June 1, 2008, to June 30, 2017, retrospectively. Chest computed tomography was performed in 392 patients before treatment. The clinical characteristics and radiographic findings of these patients were evaluated. RESULTS: Of the 392 patients with psoriasis, IP was detected in 8 patients (2%). Bilateral ground-glass and/or irregular linear (reticular) opacity in the lower lung zone was the most common chest computed tomography finding. Five of the 8 patients with IP were treated with anti-interleukin (IL) 12/IL-23 or IL-17 antibodies, leading to decreased or stable IP activity. CONCLUSION: Interstitial pneumonia was detected in 2% of patients with psoriasis who needed systemic treatments. Ground-glass and/or irregular linear (reticular) opacity in the bilateral lower lobes was characteristic of IP with psoriasis. The IL-23/IL-17 axis may play important roles in the pathogenesis of IP in psoriasis.

17.
Intern Med ; 56(4): 429-433, 2017.
Article in English | MEDLINE | ID: mdl-28202866

ABSTRACT

A 76-year-old woman was diagnosed with lung tuberculosis. On the second day of anti-tuberculosis treatment, she became unconscious and developed status epilepticus accompanied by hyponatremia. The hyponatremia was caused by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Detailed examinations revealed that the patient's status epilepticus had occurred due to hyponatremia, which was caused by lung tuberculosis-associated SIADH. Previous case reports noted that patients with tuberculosis-associated SIADH showed mild clinical manifestations. They also reported that extensive lung involvement was associated with SIADH development. We herein report a rare case of SIADH complicated with status epilepticus that was caused by tuberculosis with mild lung involvement.


Subject(s)
Inappropriate ADH Syndrome/complications , Status Epilepticus/etiology , Tuberculosis, Pulmonary/complications , Aged , Antitubercular Agents/therapeutic use , Female , Humans , Hyponatremia/etiology , Hyponatremia/microbiology , Inappropriate ADH Syndrome/diagnosis , Inappropriate ADH Syndrome/microbiology , Radiography, Thoracic , Status Epilepticus/microbiology , Tomography, X-Ray Computed , Tuberculosis, Pulmonary/diagnostic imaging , Tuberculosis, Pulmonary/drug therapy
18.
Respir Med ; 122: 43-50, 2017 01.
Article in English | MEDLINE | ID: mdl-27993290

ABSTRACT

BACKGROUND: Dysregulation of the prostaglandin E2 (PGE2) signaling pathway has been implicated in interstitial pneumonia (IP) pathogenesis. Due to the unstable nature of PGE2, available detection methods may not precisely reflect PGE2 levels. We explored the clinical usefulness of measuring stable prostaglandin E-major urinary metabolite (PGE-MUM) with respect to pathogenesis and extent of chronic fibrosing IP (CFIP), including idiopathic pulmonary fibrosis (IPF), as PGE-MUM is reflective of systemic PGE2 production. METHODS: PGE-MUM was measured by radioimmunoassay in controls (n = 124) and patients with lung diseases (bronchial asthma (BA): n = 78, chronic obstructive pulmonary disease (COPD): n = 33, CFIP: n = 44). Extent of lung fibrosis was assessed by fibrosing score (FS) of computed tomography (CT) (FS1-4). Immunohistochemical evaluation of COX-2 was performed to find PGE2 producing cells in IPF. Human bronchial epithelial cells (HBEC) and lung fibroblasts (LFB) were used in in vitro experiments. RESULTS: Compared to control, PGE-MUM levels were significantly elevated in CFIP. PGE-MUM levels were positively correlated with FS, and inversely correlated with %DLCO in IP (FS 1-3). COX-2 was highly expressed in metaplastic epithelial cells in IPF, but lower expression of EP2 receptor was demonstrated in LFB derived from IPF. TGF-ß induced COX-2 expression in HBEC. CONCLUSIONS: PGE-MUM, elevated in CFIP, is a promising biomarker reflecting disease activity. Metaplastic epithelial cells can be a source of elevated PGE-MUM in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Lung Diseases, Interstitial/metabolism , Lung/metabolism , Prostanoic Acids/analysis , Urine/chemistry , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Cyclooxygenase 2/metabolism , Epithelial Cells/metabolism , Female , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/pathology , Japan/epidemiology , Lung/pathology , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/pathology , Male , Middle Aged , Prostaglandins/metabolism , Transforming Growth Factor beta/metabolism
19.
Autophagy ; 13(8): 1420-1434, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28613983

ABSTRACT

Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor ß) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.


Subject(s)
Azithromycin/pharmacology , Cell Differentiation/drug effects , Lung/pathology , Myofibroblasts/pathology , NADPH Oxidase 4/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Animals , Bleomycin , Disease Models, Animal , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Myofibroblasts/drug effects , Myofibroblasts/enzymology , Myofibroblasts/ultrastructure , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Unfolded Protein Response/drug effects
20.
Hum Cell ; 29(4): 176-80, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27277221

ABSTRACT

Trophectoderm vesicles (TVs) are observed in some blastocysts that penetrate cells from the zona pellucida to the outer margin. Therefore, we compared this incidence in relation to hatching, pregnancy, and miscarriage rates between conventional in vitro fertilization (c-IVF) and intracytoplasmic sperm injection (ICSI). Vitrified/warmed blastocysts (n = 112) were derived from surplus embryos. The blastocysts were then observed using time-lapse cinematography to resolve the relationship between hatching and implantation. Another study was conducted that comprised 681 embryo transfer cycles in 533 patients who received a single vitrified/warmed blastocyst from our clinic. The incidence of TV was significantly higher in embryos inseminated by ICSI compared with c-IVF [ICSI: 51/56 (91 %); c-IVF: 25/56 (45 %); P < 0.01]. The successful hatching rate was significantly lower in ICSI than in c-IVF [ICSI: 11/56 (20 %); c-IVF: 29/56 (52 %); P < 0.01]. In addition, the hatching rate was significantly lower when TVs were present (14/76; 18 %) than in non-TV embryos (26/36; 72 %) (P < 0.01). In regard to the clinical study results, no significant differences were found between the groups in the pregnancy rate (TV present group: 107/183, 58.5 %; TV absent group: 273/498, 54.8 %) and miscarriage rate (TV present group: 21/107, 19.6 %; TV absent group: 53/273, 19.4 %). In vivo, we hypothesized that hatching and hatched would occur naturally by assisting protease action in the uterus; therefore, these results suggest that the presence of TV has no effect on pregnancy rates in the clinical setting.


Subject(s)
Abortion, Spontaneous , Blastocyst , Fertilization in Vitro , Pregnancy Rate , Adult , Blastocyst/cytology , Blastocyst/physiology , Embryo Implantation , Embryo Transfer , Female , Humans , Pregnancy , Sperm Injections, Intracytoplasmic , Zona Pellucida
SELECTION OF CITATIONS
SEARCH DETAIL