Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Small ; 20(9): e2305528, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845030

ABSTRACT

Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location.  The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.

2.
Anal Chem ; 93(23): 8336-8344, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34075746

ABSTRACT

In this article, we present electrochemical interrogation for collision dynamics of electrogenerated individual polybromide ionic liquid (PBIL) droplets through chronoamperometry combined with fast scan cyclic voltammetry (CA-FSCV). In the CA mode of CA-FSCV, a Pt ultramicroelectrode (UME) acts as the electrochemical generator for PBIL droplets by holding the oxidation potential for Br- in a given time, while FSCV is repetitively performed at a certain frequency. In the FSCV mode of CA-FSCV, a Pt UME serves as the probe to electrochemically monitor Br3- reduction for an adsorbed PBIL droplet during collision with a high temporal resolution. Based on the newly introduced CA-FSCV, we can estimate the dynamic changes in the following parameters for a short collision time: the contact radius of a PBIL droplet on a Pt UME, the concentration of Br- in the droplet, and the apparent charge transfer rate constant for electro-reduction of Br3- to Br- in the droplet, koapp. Moreover, a computational calculation using molecular dynamics is presented that can explain the change in koapp as a function of time for Br- electrolysis in a PBIL droplet. Based on the quantitative estimation of the above parameters, we suggest a more advanced mechanism for the stochastic electrochemical collision process of a PBIL droplet. These findings are important for understanding QBr2n+1/QBr half redox reactions in aqueous energy storage systems, such as Zn-Br redox flow batteries and Br-related redox enhanced electrochemical capacitors.

3.
Anal Chem ; 93(48): 15861-15869, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34839667

ABSTRACT

We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the in vivo detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, all Rct, Rs, and Cdl voltammograms showed different DA redox patterns and linear trends for the DA concentration (R2 > 0.99). Furthermore, the Rct voltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally, Cdl from FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r = 0.986) and in vivo experiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.


Subject(s)
Dielectric Spectroscopy , Electrochemical Techniques , Animals , Electrodes , Feasibility Studies , Fourier Analysis , Neurotransmitter Agents , Rats , Rats, Sprague-Dawley
4.
Anal Chem ; 93(51): 16987-16994, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34855368

ABSTRACT

Here, we present the development of a novel voltammetric technique, N-shaped multiple cyclic square wave voltammetry (N-MCSWV) and its application in vivo. It allows quantitative measurements of tonic extracellular levels of serotonin in vivo with mitigated fouling effects. N-MCSWV enriches the electrochemical information by generating high dimensional voltammograms, which enables high sensitivity and selectivity against 5-hydroindoleacetic acid (5-HIAA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), histamine, ascorbic acid, norepinephrine, adenosine, and pH. Using N-MCSWV, in combination with PEDOT:Nafion-coated carbon fiber microelectrodes, a tonic serotonin concentration of 52 ± 5.8 nM (n = 20 rats, ±SEM) was determined in the substantia nigra pars reticulata of urethane-anesthetized rats. Pharmacological challenges with dopaminergic, noradrenergic, and serotonergic synaptic reuptake inhibitors supported the ability of N-MCSWV to selectively detect tonic serotonin levels in vivo. Overall, N-MCSWV is a novel voltammetric technique for analytical quantification of serotonin. It offers continuous monitoring of changes in tonic serotonin concentrations in the brain to further our understanding of the role of serotonin in normal behaviors and psychiatric disorders.


Subject(s)
Dopamine , Serotonin , Animals , Brain Chemistry , Microelectrodes , Rats , Rats, Sprague-Dawley , Serotonin/metabolism
5.
Anal Chem ; 92(1): 774-781, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31789495

ABSTRACT

Although N-shaped fast scan cyclic voltammetry (N-FSCV) is well-established as an electroanalytical method to measure extracellular serotonin concentrations in vivo, it is in need of improvement in both sensitivity and selectivity. Based on our previous studies using fast cyclic square-wave voltammetry (FCSWV) for in vivo dopamine measurements, we have modified this technique to optimize the detection of serotonin in vivo. A series of large amplitude square-shaped potentials was superimposed onto an N-shaped waveform to provide cycling through multiple redox reactions within the N-shaped waveform to enhance the sensitivity and selectivity to serotonin measurement when combined with a two-dimensional voltammogram. N-Shaped fast cyclic square-wave voltammetry (N-FCSWV) showed significantly higher sensitivity to serotonin compared to conventional N-FSCV. In addition, N-FCSWV showed better performance than conventional N-shaped FSCV in differentiating serotonin from its major interferents, dopamine and 5-hydroxyindoleascetic acid (5-HIAA). It was also confirmed that the large amplitude of the square waveform did not influence local neuronal activity, and it could monitor electrical stimulation evoked phasic release of serotonin in the rat substantia nigra pars reticulata (SNr) before and after systemic injection of escitalopram (ESCIT, 10 mg/kg i.p.), a serotonin selective reuptake inhibitor.


Subject(s)
Electrochemical Techniques/instrumentation , Serotonin/analysis , Animals , Brain Chemistry , Electrochemical Techniques/methods , Equipment Design , Male , Microelectrodes , Rats, Sprague-Dawley
6.
Anal Chem ; 90(22): 13348-13355, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30358389

ABSTRACT

Although fast-scan cyclic voltammetry (FSCV) has been widely used for in vivo neurochemical detection, the sensitivity and selectivity of the technique can be further improved. In this study, we develop fast cyclic square-wave voltammetry (FCSWV) as a novel voltammetric technique that combines large-amplitude cyclic square-wave voltammetry (CSWV) with background subtraction. A large-amplitude, square-shaped potential was applied to induce cycling through multiple redox reactions within a square pulse to increase sensitivity and selectivity when combined with a two-dimensional voltammogram. As a result, FCSWV was significantly more sensitive than FSCV ( n = 5 electrodes, two-way ANOVA, p = 0.0002). In addition, FCSWV could differentiate dopamine from other catecholamines (e.g., epinephrine and norepinephrine) and serotonin better than conventional FSCV. With the confirmation that FCSWV did not influence local neuronal activity, despite the large amplitude of the square waveform, it could monitor electrically induced phasic changes in dopamine release in rat striatum before and after injecting nomifensine, a dopamine reuptake inhibitor.


Subject(s)
Electrochemical Techniques/methods , Neurotransmitter Agents/analysis , Animals , Corpus Striatum/metabolism , Dopamine/analysis , Epinephrine/analysis , Male , Mice , Norepinephrine/analysis , Rats, Sprague-Dawley , Sensitivity and Specificity , Serotonin/analysis
7.
Small Methods ; : e2301495, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308323

ABSTRACT

Field-driven transport systems offer great promise for use as biofunctionalized carriers in microrobotics, biomedicine, and cell delivery applications. Despite the construction of artificial microtubules using several micromagnets, which provide a promising transport pathway for the synchronous delivery of microrobotic carriers to the targeted location inside microvascular networks, the selective transport of different microrobotic carriers remains an unexplored challenge. This study demonstrated the selective manipulation and transport of microrobotics along a patterned micromagnet using applied magnetic fields. Owing to varied field strengths, the magnetic beads used as the microrobotic carriers with different sizes revealed varied locomotion, including all of them moving along the same direction, selective rotation, bidirectional locomotion, and all of them moving in a reversed direction. Furthermore, cells immobilized with magnetic beads and nanoparticles also revealed varied locomotion. It is expected that such steering strategies of microrobotic carriers can be used in microvascular channels for the targeted delivery of drugs or cells in an organized manner.

8.
Sci Data ; 11(1): 343, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580698

ABSTRACT

The sports industry is witnessing an increasing trend of utilizing multiple synchronized sensors for player data collection, enabling personalized training systems with multi-perspective real-time feedback. Badminton could benefit from these various sensors, but there is a scarcity of comprehensive badminton action datasets for analysis and training feedback. Addressing this gap, this paper introduces a multi-sensor badminton dataset for forehand clear and backhand drive strokes, based on interviews with coaches for optimal usability. The dataset covers various skill levels, including beginners, intermediates, and experts, providing resources for understanding biomechanics across skill levels. It encompasses 7,763 badminton swing data from 25 players, featuring sensor data on eye tracking, body tracking, muscle signals, and foot pressure. The dataset also includes video recordings, detailed annotations on stroke type, skill level, sound, ball landing, and hitting location, as well as survey and interview data. We validated our dataset by applying a proof-of-concept machine learning model to all annotation data, demonstrating its comprehensive applicability in advanced badminton training and research.


Subject(s)
Athletic Performance , Racquet Sports , Wearable Electronic Devices , Biomechanical Phenomena , Lower Extremity , Racquet Sports/physiology , Humans
9.
Nanomaterials (Basel) ; 13(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513071

ABSTRACT

Chitosan, a biomass raw material, was utilized as a carbon skeleton source and served as a nitrogen (N) atom dopant in this study. By co-doping phosphorus (P) atoms from H3PO4 and nitrogen (N) atoms with a carbon (C) skeleton and hybridizing them with Mn3O4 on a carbon fiber cloth (CC), an Mn3O4@NPC/CC electrode was fabricated, which exhibited an excellent capacitive performance. The N, P-codoped carbon polycrystalline material was hybridized with Mn3O4 during the chitosan carbonization process. This carbon polycrystalline structure exhibited an enhanced conductivity and increased mesopore content, thereby optimizing the micropore/mesopore ratio in the electrode material. This optimization contributed to the improved storage, transmission, and diffusion of electrolyte ions within the Mn3O4@NPC electrode. The electrochemical behavior was evaluated via cyclic voltammetry and galvanostatic charge-discharge tests using a 1 M Na2SO4 electrolyte. The capacitance significantly increased to 256.8 F g-1 at 1 A g-1, and the capacitance retention rate reached 97.3% after 5000 charge/discharge cycles, owing to the higher concentration of the P-dopant in the Mn3O4@NPC/CC electrode. These findings highlight the tremendous potential of flexible supercapacitor electrodes in various applications.

10.
Dalton Trans ; 51(47): 18277-18283, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36411978

ABSTRACT

Herein, sol-gel-synthesized α-Li2TiO3 was evaluated as a new promising anode material for lithium-ion batteries. The results show ultrastable release of discharge capacity within the range of 290-350 mA h g-1 in 400 cycles. Decent rate performances were also observed. A capacity of ca. 113 mA h g-1 was retained at a current density of 3 C. A 2 × 2 × 1 supercell of the lowest energy ordering structure was used in density functional theory simulations. The calculations show that in the intercalation process, Li+ preferentially enters the tetrahedral voids, leading to the activation of lithium-ion diffusion on the a-b plane with a minimal energy barrier of 0.06 eV (compared with 0.82 eV for the fully charged state). The activation of cation mobility at Li+ intercalation and insulator-conductor transition both contribute significantly to the ultrastability of the material. However, Li+ propagation along the c-axis is highly limited during the whole intercalation process. The enumeration of all the ordering structures on the tetrahedral sites shows two intermediate phases, α-Li2.25TiO3 and α-Li3.0TiO3, as observed from the formation energy convex hull.

11.
Adv Sci (Weinh) ; 9(6): e2103579, 2022 02.
Article in English | MEDLINE | ID: mdl-34910376

ABSTRACT

Cell clustering techniques are important to produce artificial cell clusters for in vitro models of intercellular mechanisms at the single-cell level. The analyses considering physical variables such as the shape and size of cells have been very limited. In addition, the precise manipulation of cells and control of the physical variables are still challenging. In this paper, a magnetophoretic device consisting of a trampoline micromagnet and active elements that enable the control of individual selective jumping motion and positioning of a micro-object is proposed. Based on a numerical simulation under various conditions, automatic separation or selective clustering of micro-objects according to their sizes is performed by parallel control and programmable manipulation. This method provides efficient control of the physical variables of cells and grouping of cells with the desired size and number, which can be a milestone for a better understanding of the intercellular dynamics between clustered cells at the single-cell level for future cell-on-chip applications.


Subject(s)
Cell Movement/physiology , Immunomagnetic Separation/instrumentation , Lab-On-A-Chip Devices , Cluster Analysis , Computer Simulation , Magnetics
12.
Mater Horiz ; 9(9): 2353-2363, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35792087

ABSTRACT

Conventional micro-particle manipulation technologies have been used for various biomedical applications using dynamics on a plane without vertical movement. In this case, irregular topographic structures on surfaces could be a factor that causes the failure of the intended control. Here, we demonstrated a novel colloidal particle manipulation mediated by the topographic effect generated by the "micro hill" and "surface gradient" around a micro-magnet. The magnetic landscape, matter orbital, created by periodically arranged circular micro-magnets, induces a symmetric orbit of magnetic particle flow under a rotating magnetic field. The topographic effect can break this symmetry of the energy distribution by controlling the distance between the source of the driving force and target particles by several nanometers on the surface morphology. The origin symmetric orbit of colloidal flow can be distorted by modifying the symmetry in the energy landscape at the switching point without changing the driving force. The enhancement of the magnetic effect of the micro-magnet array can lead to the recovery of the symmetry of the orbit. Also, this effect on the surfaces of on-chip-based devices configured by symmetry control was demonstrated for selective manipulation, trapping, recovery, and altering the direction using a time-dependent magnetic field. Hence, the developed technique could be used in various precise lab-on-a-chip applications, including where the topographic effect is required as an additional variable without affecting the existing control method.


Subject(s)
Lab-On-A-Chip Devices , Magnetics , Cell-Derived Microparticles/physiology , Colloids , Magnetic Fields , Magnets
13.
Biology (Basel) ; 10(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34681092

ABSTRACT

The early removal of drug delivery agents before reaching the affected target remains an area of interest to researchers. Several magnetotactic bacteria (MTB) have been used as self-propelled drug delivery agents, and they can also be controlled by an external magnetic field. By attaching the PEG-biotin polymer, the bacteria are turned into a stealth material that can escape from the phagocytosis process and reach the area of interest with the drug load. In the study, we developed a potential drug carrier by attaching the PEG-biotin to the MTB-through-NHS crosslinker to form a MTB/PEG-biotin complex. The attachment stability, efficacy, and bacterial viability upon attachment of the PEG-biotin polymer were investigated. Biological applications were carried out using a cytotoxicity assay of THP-1 cells, and the results indicate that the MTB/PEG-biotin complex is less harmful to cell viability compared to MTB alone. Along with cytotoxicity, an assay for cell association was also evaluated to assess the complex as a potential stealth material. The development of these complexes focuses on an easy, time-saving, and stable technique of polymer attachment with the bacteria, without damaging the cell's surface, so as to make it a strong and reliable delivery agent.

14.
Vaccines (Basel) ; 9(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34696253

ABSTRACT

The efficacy and safety of the BNT162b2 vaccine are known, but antibodies are expected to decrease over time after vaccination. We collected blood samples from 104 fully vaccinated health care workers at 3 and 5 weeks after first vaccination and 4 months after second vaccination. Antibody titers and neutralizing antibodies were measured. In our study, both antibody titers and neutralizing antibodies increased significantly at 5 weeks after first vaccination but decreased rapidly at 4 months after second vaccination. Additionally, the results showed a significant decrease regardless of gender or age. Further studies are needed to help determine the interval of SARS-CoV-2 vaccinations.

15.
ACS Omega ; 6(49): 33599-33606, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926907

ABSTRACT

Fast-scan cyclic voltammetry (FSCV) is a technique for measuring phasic release of neurotransmitters with millisecond temporal resolution. The current data are captured by carbon fiber microelectrodes, and non-Faradaic current is subtracted from the background current to extract the Faradaic redox current through a background subtraction algorithm. FSCV is able to measure neurotransmitter concentrations in vivo down to the nanomolar scale, making it a very robust and useful technique for probing neurotransmitter release dynamics and communication across neural networks. In this study, we describe a technique that can further lower the limit of detection of FSCV. By taking advantage of a "waveform steering" technique and by amplifying only the oxidation peak of dopamine to reduce noise fluctuations, we demonstrate the ability to measure dopamine concentrations down to 0.17 nM. Waveform steering is a technique to dynamically alter the input waveform to ensure that the background current remains stable over time. Specifically, the region of the input waveform in the vicinity of the dopamine oxidation potential (∼0.6 V) is kept flat. Thus, amplification of the input waveform will amplify only the Faradaic current, lowering the existing limit of detection for dopamine from 5.48 to 0.17 nM, a 32-fold reduction, and for serotonin, it lowers the limit of detection from 57.3 to 1.46 nM, a 39-fold reduction compared to conventional FSCV. Finally, the applicability of steered FSCV to in vivo dopamine detection was also demonstrated in this study. In conclusion, steered FSCV might be used as a neurochemical monitoring tool for enhancing detection sensitivity.

16.
RSC Adv ; 10(71): 43480-43488, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-35519686

ABSTRACT

We demonstrated a simple one-pot synthesis approach for the controlled composition of homogeneous FePt and phase-controlled heterostructured FePt/Fe3O4 nanocubes (NCs) utilizing 1,2-hexadecanediol and 1-octadecene as the reducing agents, respectively. When the Fe : Pt precursor ratio was varied from 1 : 1 to 4 : 1 and 1,2-hexadecanediol was utilized as the reducing agent, homogeneous FePt NCs were formed, whereas the heterostructures of FePt/Fe3O4 NCs were obtained when utilizing 1-octadecene as the reducing agent at Fe : Pt ratio of 4 : 1. The initial domination of nucleation of Pt-rich species and the subsequent deposition of Fe atoms leads to the formation of homogeneous FePt NCs. Heterostructured FePt/Fe3O4 NCs were obtained by the initial FePt seed formation, which was then followed by the heterogeneous growth of Fe3O4. The heterostructured FePt/Fe3O4 NCs exhibited two phases, i.e., FePt phase with a (111) facet of the fcc and Fe3O4 phase with an inverse cubic spinel structure. Moreover, both the FePt and the FePt/Fe3O4 NCs demonstrated almost negligible coercivity, which confirmed a typical superparamagnetic behavior. Furthermore, the cell viability tests of the FePt and FePt/Fe3O4 NCs demonstrated excellent biocompatibilities. Hence, the NCs could be useful for various biomedical applications, including MRI contrast agents, hyperthermia, and as a label in magnetic biochips.

SELECTION OF CITATIONS
SEARCH DETAIL