Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
New Phytol ; 241(2): 747-763, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964509

ABSTRACT

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Subject(s)
Arabidopsis , Fucose , Fucose/metabolism , Guanosine Diphosphate Fucose/metabolism , Boron/metabolism , Arabidopsis/metabolism , Polysaccharides/metabolism
2.
Plant Physiol ; 186(4): 1859-1877, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34618107

ABSTRACT

Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.


Subject(s)
Aconitate Hydratase/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Mitochondria/metabolism , Transcription Factors/metabolism , Aconitate Hydratase/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism
3.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Article in English | MEDLINE | ID: mdl-31659127

ABSTRACT

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Botrytis/immunology , Cellular Senescence/genetics , Disease Resistance/genetics , Plant Diseases/immunology , Plant Leaves/metabolism , Protein Phosphatase 2/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Calcium/metabolism , Cellular Senescence/physiology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Disease Resistance/immunology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Genotype , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Mutation , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Protein Binding , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Phosphatase 2/genetics , Salicylic Acid/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
4.
Plant Cell ; 30(11): 2813-2837, 2018 11.
Article in English | MEDLINE | ID: mdl-30361234

ABSTRACT

Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Stomata/metabolism , Plant Stomata/physiology , Protein Kinases/metabolism , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology
5.
EMBO J ; 34(1): 55-66, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25398910

ABSTRACT

Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Caspases/metabolism , Oxidative Stress/physiology , Peptides/metabolism , Protein Kinases/metabolism , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Caspases/genetics , Cell Death/physiology , Cell Membrane/genetics , Cell Membrane/metabolism , Peptides/genetics , Protein Binding/physiology , Protein Kinases/genetics , Protein Structure, Tertiary
6.
New Phytol ; 224(4): 1585-1599, 2019 12.
Article in English | MEDLINE | ID: mdl-31125440

ABSTRACT

Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.


Subject(s)
Populus/cytology , Transcription Factor AP-2/metabolism , Xylem/cytology , Cell Wall/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Populus/genetics , Populus/growth & development , Populus/metabolism , Signal Transduction , Transcription Factor AP-2/genetics , Wood/chemistry , Wood/cytology , X-Ray Diffraction
7.
New Phytol ; 222(4): 1816-1831, 2019 06.
Article in English | MEDLINE | ID: mdl-30724367

ABSTRACT

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Subject(s)
Betula/genetics , Plant Bark/chemistry , Plant Bark/genetics , Plant Stems/genetics , Transcriptome/genetics , Betula/growth & development , Biosynthetic Pathways/genetics , Cambium/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Lipids/chemistry , Meristem/genetics , Organ Specificity , Species Specificity , Stem Cell Niche , Triterpenes/metabolism , Wood/genetics
8.
Plant Cell ; 28(10): 2493-2509, 2016 10.
Article in English | MEDLINE | ID: mdl-27694184

ABSTRACT

Activation of the guard cell S-type anion channel SLAC1 is important for stomatal closure in response to diverse stimuli, including elevated CO2 The majority of known SLAC1 activation mechanisms depend on abscisic acid (ABA) signaling. Several lines of evidence point to a parallel ABA-independent mechanism of CO2-induced stomatal regulation; however, molecular details of this pathway remain scarce. Here, we isolated a dominant mutation in the protein kinase HIGH LEAF TEMPERATURE1 (HT1), an essential regulator of stomatal CO2 responses, in an ozone sensitivity screen of Arabidopsis thaliana The mutation caused constitutively open stomata and impaired stomatal CO2 responses. We show that the mitogen-activated protein kinases (MPKs) MPK4 and MPK12 can inhibit HT1 activity in vitro and this inhibition is decreased for the dominant allele of HT1. We also show that HT1 inhibits the activation of the SLAC1 anion channel by the protein kinases OPEN STOMATA1 and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) in Xenopus laevis oocytes. Notably, MPK12 can restore SLAC1 activation in the presence of HT1, but not in the presence of the dominant allele of HT1. Based on these data, we propose a model for sequential roles of MPK12, HT1, and GHR1 in the ABA-independent regulation of SLAC1 during CO2-induced stomatal closure.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Stomata/metabolism , Protein Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mutation/genetics , Plant Stomata/genetics , Protein Kinases/genetics , Signal Transduction/genetics , Signal Transduction/physiology
9.
PLoS Biol ; 14(12): e2000322, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27923039

ABSTRACT

Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)-a central node in guard cell CO2 signaling-and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Carbon Dioxide/metabolism , Genetic Variation , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromosome Mapping , Ozone/metabolism , Photosynthesis , Quantitative Trait Loci , Water
10.
New Phytol ; 218(3): 999-1014, 2018 05.
Article in English | MEDLINE | ID: mdl-29528503

ABSTRACT

The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremula × tremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.


Subject(s)
Ethylenes/metabolism , Hybridization, Genetic , Populus/metabolism , Signal Transduction , Wood/metabolism , Amino Acids, Cyclic/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Cell Wall/ultrastructure , Cellulose/metabolism , Computer Simulation , Genes, Plant , Populus/genetics , Populus/ultrastructure , Principal Component Analysis , Promoter Regions, Genetic/genetics , Spectroscopy, Fourier Transform Infrared , Water/pharmacology , Wood/drug effects , Wood/growth & development , Wood/ultrastructure , Xylem/drug effects , Xylem/metabolism , Xylem/ultrastructure
11.
New Phytol ; 220(1): 232-248, 2018 10.
Article in English | MEDLINE | ID: mdl-30156022

ABSTRACT

The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Nuclear Proteins/metabolism , Oomycetes/metabolism , Plant Immunity , Proteins/metabolism , ADP Ribose Transferases/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Mutation/genetics , Nuclear Proteins/genetics , Oomycetes/drug effects , Oomycetes/isolation & purification , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Immunity/drug effects , Plants, Genetically Modified , Protein Domains , Protein Multimerization/drug effects , Salicylic Acid/pharmacology , Signal Transduction/radiation effects , Transcription, Genetic/drug effects , Virulence/drug effects
12.
J Exp Bot ; 69(14): 3347-3358, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29514325

ABSTRACT

The remarkable plasticity of the biochemical machinery in plants allows the integration of a multitude of stimuli, enabling acclimation to a wide range of growth conditions. The integration of information on light and temperature enables plants to sense seasonal changes and adjust growth, defense, and transition to flowering according to the prevailing conditions. By now, the role of reactive oxygen species (ROS) as important signaling molecules has been established. Here, we review recent data on ROS as important components in the integration of light and temperature signaling by crosstalk with the circadian clock and calcium signaling. Furthermore, we highlight that different environmental conditions critically affect the interpretation of stress stimuli, and consequently defense mechanisms and stress outcome. For example, day length plays an important role in whether enhanced ROS production under stress conditions is directed towards activation of redox poising mechanisms or triggering programmed cell death (PCD). Furthermore, a mild increase in temperature can cause down-regulation of immunity and render plants more sensitive to biotrophic pathogens. Taken together, the evidence presented here demonstrates the complexity of signaling pathways and outline the importance of their correct interpretation in context with the given environmental conditions.


Subject(s)
Arabidopsis/physiology , Light , Reactive Oxygen Species/metabolism , Signal Transduction , Temperature , Arabidopsis/radiation effects , Oxidation-Reduction
13.
PLoS Genet ; 11(7): e1005373, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26197346

ABSTRACT

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Oxidative Stress/immunology , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/enzymology , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Ascomycota/immunology , DNA, Bacterial/genetics , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Diseases/microbiology , Protein Serine-Threonine Kinases/genetics , Pseudomonas syringae/immunology , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Xanthine Oxidase/metabolism
14.
J Integr Plant Biol ; 60(9): 805-826, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29660240

ABSTRACT

Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.


Subject(s)
Cell Membrane/metabolism , Plant Stomata/metabolism , Plants/metabolism , Reactive Oxygen Species/metabolism , Droughts , Signal Transduction/physiology
15.
Plant Physiol ; 171(3): 1569-80, 2016 07.
Article in English | MEDLINE | ID: mdl-27208297

ABSTRACT

Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca(2+) concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells.


Subject(s)
Plant Stomata/metabolism , Reactive Oxygen Species/metabolism , Abscisic Acid/metabolism , Calcium/metabolism , NADPH Oxidases/metabolism , Phosphorylation , Plant Cells/metabolism , Plant Proteins/metabolism , Plant Stomata/physiology , Signal Transduction
16.
Plant Physiol ; 171(3): 1704-19, 2016 07.
Article in English | MEDLINE | ID: mdl-27225899

ABSTRACT

The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 species. Using Arabidopsis (Arabidopsis thaliana) mutants lacking the peroxisomal CATALASE2 (cat2-2) that display stunted growth and cell death lesions under ambient air, we isolated a second-site loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) that attenuated the photorespiratory phenotype of cat2-2 Interestingly, knocking out the nearly identical GOX2 in the cat2-2 background did not affect the photorespiratory phenotype, indicating that GOX1 and GOX2 play distinct metabolic roles. We further investigated their individual functions in single gox1-1 and gox2-1 mutants and revealed that their phenotypes can be modulated by environmental conditions that increase the metabolic flux through the photorespiratory pathway. High light negatively affected the photosynthetic performance and growth of both gox1-1 and gox2-1 mutants, but the negative consequences of severe photorespiration were more pronounced in the absence of GOX1, which was accompanied with lesser ability to process glycolate. Taken together, our results point toward divergent functions of the two photorespiratory GOX isoforms in Arabidopsis and contribute to a better understanding of the photorespiratory pathway.


Subject(s)
Alcohol Oxidoreductases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Alcohol Oxidoreductases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Respiration , Evolution, Molecular , Glycolates/metabolism , Light , Metabolome/genetics , Mutation , Oxidation-Reduction , Phenotype , Photosynthesis
17.
J Exp Bot ; 68(13): 3557-3571, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28586470

ABSTRACT

Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism
18.
PLoS Genet ; 10(2): e1004112, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24550736

ABSTRACT

Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cell Death/genetics , Nuclear Proteins/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Genomics , Nuclear Proteins/metabolism , Stress, Physiological/genetics
20.
J Exp Bot ; 67(21): 5975-5991, 2016 11.
Article in English | MEDLINE | ID: mdl-27697786

ABSTRACT

Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-ß-glucanases, but it is unknown if GA is also important in the development, activation, and outgrowth of para-dormant AXBs. The present data show that para-dormant AXBs up-regulate GA receptor genes during their maturation, but curtail GA biosynthesis by down-regulating the rate-limiting GIBBERELLIN 3-OXIDASE2 (GA3ox2), which is characteristically expressed in the growing apex. However, decapitation significantly up-regulated GA3ox2 and GA4-responsive 1,3-ß-glucanases (GH17-family; α-clade). In contrast, decapitation down-regulated γ-clade 1,3-ß-glucanases, which were strongly up-regulated in maturing AXBs concomitant with lipid body accumulation. Overexpression of selected GH17 members in hybrid aspen resulted in characteristic branching patterns. The α-clade member induced an acropetal branching pattern, whereas the γ-clade member activated AXBs in recurrent flushes during transient cessation of apex proliferation. The results support a model in which curtailing the final step in GA biosynthesis dwarfs the embryonic shoot, while high levels of GA precursors and GA receptors keep AXBs poised for growth. GA signaling, induced by decapitation, reinvigorates symplasmic supply routes through GA-inducible 1,3-ß-glucanases that hydrolyze callose at sieve plates and plasmodesmata.


Subject(s)
Gibberellins/physiology , Glucan 1,3-beta-Glucosidase/metabolism , Plant Shoots/metabolism , Populus/metabolism , Enzyme Induction/physiology , Gibberellins/metabolism , Glucan 1,3-beta-Glucosidase/biosynthesis , Glucan 1,3-beta-Glucosidase/genetics , Metabolic Networks and Pathways/physiology , Plant Dormancy/physiology , Plant Shoots/enzymology , Plant Shoots/growth & development , Populus/enzymology , Populus/growth & development , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL