Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Publication year range
1.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34519339

ABSTRACT

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.


Subject(s)
Calcium-Binding Proteins/metabolism , MAP Kinase Signaling System , Neurogenesis , Receptors, Notch/metabolism , Animals , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Cell Proliferation , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NIH 3T3 Cells , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Protein Binding
2.
Mol Cell ; 64(2): 251-266, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27746020

ABSTRACT

Polyubiquitin chains of different topologies regulate diverse cellular processes. K48- and K63-linked chains, the two most abundant chain types, regulate proteolytic and signaling pathways, respectively. Although recent studies reported important roles for heterogeneous chains, the functions of branched ubiquitin chains remain unclear. Here, we show that the ubiquitin chain branched at K48 and K63 regulates nuclear factor κB (NF-κB) signaling. A mass-spectrometry-based quantification strategy revealed that K48-K63 branched ubiquitin linkages are abundant in cells. In response to interleukin-1ß, the E3 ubiquitin ligase HUWE1 generates K48 branches on K63 chains formed by TRAF6, yielding K48-K63 branched chains. The K48-K63 branched linkage permits recognition by TAB2 but protects K63 linkages from CYLD-mediated deubiquitylation, thereby amplifying NF-κB signals. These results reveal a previously unappreciated cooperation between K48 and K63 linkages that generates a unique coding signal: ubiquitin chain branching differentially controls readout of the ubiquitin code by specific reader and eraser proteins to activate NF-κB signaling.


Subject(s)
Lysine/chemistry , NF-kappa B/chemistry , Polyubiquitin/chemistry , TNF Receptor-Associated Factor 6/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Deubiquitinating Enzyme CYLD , Gene Expression , Humans , Interleukin-1beta/pharmacology , Intracellular Signaling Peptides and Proteins , Lysine/metabolism , Models, Molecular , NF-kappa B/genetics , NF-kappa B/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Polyubiquitin/genetics , Polyubiquitin/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Signal Transduction , Substrate Specificity , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Nihon Shokakibyo Gakkai Zasshi ; 121(2): 127-133, 2024.
Article in Japanese | MEDLINE | ID: mdl-38346760

ABSTRACT

A 28-year-old female patient with no particular medical history had a sore throat seven days before admission. Subsequently, she developed malaise, right abdominal pain, and a fever of 38°C and visited our hospital. A blood test revealed a mild inflammatory response and elevated liver enzymes, and she was admitted to the hospital for detailed examination and acute liver injury treatment. Various viral tests and autoantibody measurements revealed elevated Epstein-Barr virus (EBV) immunoglobulin M and negative EB nuclear antigen antibodies. Therefore, she was diagnosed with primary infectious mononucleosis-associated EB viral hepatitis. Abdominal computed tomography upon admission revealed swollen lymph nodes around the stomach;thus, esophagogastroduodenoscopy (EGD) was performed. A histopathological examination revealed severe lymphocytic infiltration, and EB encoding region in situ hybridization demonstrated that 10-20% of the lymphocytes were EBV-infected. Drip and rest treatment improved the patient's liver enzymes, and her symptoms resolved. Repeat EGD after two months revealed improved gastric erosions. Here, we report a case of EBV-associated gastritis that was discovered due to perigastric lymphadenopathy accompanied by infectious mononucleosis. This report includes a review of the literature because a few studies reported EBV-associated gastritis.


Subject(s)
Epstein-Barr Virus Infections , Gastritis , Hepatitis, Viral, Human , Infectious Mononucleosis , Lymphadenopathy , Humans , Female , Adult , Infectious Mononucleosis/complications , Herpesvirus 4, Human , Epstein-Barr Virus Infections/complications , Lymphadenopathy/etiology , Lymphadenopathy/complications , Gastritis/etiology , Gastritis/diagnosis , Antibodies, Viral
4.
Am J Pathol ; 192(11): 1559-1572, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963465

ABSTRACT

The toxicologic effects of nanomaterials, such as carbon nanotubes (CNTs), on the immune system are understood well. However, the precise relationship between long-term exposure to CNTs and chronic inflammation remains unclear. In this study, a mouse model of chronic peritonitis was established using i.p. injection of multiwalled CNTs treated by the Taquann method with high dispersion efficiency. Chronic peritonitis with fibrosis was observed in Taquann-treated multiwalled CNT (T-CNT)-injected mice, but not in Taquann-treated titanium dioxide-injected mice. In vivo and in vitro experiments showed that matrix metalloproteinase-12 (MMP-12) of macrophages was up-regulated by T-CNT to enhance fibroblast activation and profibrotic molecule expression in fibroblasts. In addition, T-CNT-induced peritonitis reduced MMP-12 expression in Nfκb1-/- mice, suggesting that MMP-12-producing macrophages play a key role in chronic inflammation due to T-CNT exposure through NF-κB activation. The results of this study could be helpful in understanding the molecular toxicity of nanomaterial and chronic inflammation.

5.
Part Fibre Toxicol ; 19(1): 38, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35590372

ABSTRACT

BACKGROUND: A mounting number of studies have been documenting the carcinogenic potential of multiwalled carbon nanotubes (MWCNTs); however, only a few studies have evaluated the pulmonary carcinogenicity of MWCNTs in vivo. A 2-year inhalation study demonstrated that MWNT-7, a widely used MWCNT, was a pulmonary carcinogen in rats. In another 2-year study, rats administered MWNT-7 by intratracheal instillation at the beginning of the experimental period developed pleural mesotheliomas but not lung tumors. To obtain data more comparable with rats exposed to MWNT-7 by inhalation, we administered MWNT-7 to F344 rats by intratracheal instillation once every 4-weeks over the course of 2 years at 0, 0.125, and 0.5 mg/kg body weight, allowing lung burdens of MWNT-7 to increase over the entire experimental period, similar to the inhalation study. RESULTS: Absolute and relative lung weights were significantly elevated in both MWNT-7-treated groups. Dose- and time-dependent toxic effects in the lung and pleura, such as inflammatory, fibrotic, and hyperplastic lesions, were found in both treated groups. The incidences of lung carcinomas, lung adenomas, and pleural mesotheliomas were significantly increased in the high-dose group compared with the control group. The pleural mesotheliomas developed mainly at the mediastinum. No MWNT-7-related neoplastic lesions were noted in the other organs. Cytological and biochemical parameters of the bronchoalveolar lavage fluid (BALF) were elevated in both treated groups. The lung burden of MWNT-7 was dose- and time-dependent, and at the terminal necropsy, the average value was 0.9 and 3.6 mg/lung in the low-dose and high-dose groups, respectively. The number of fibers in the pleural cavity was also dose- and time-dependent. CONCLUSIONS: Repeated administration of MWNT-7 by intratracheal instillation over the 2 years indicates that MWNT-7 is carcinogenic to both the lung and pleura of rats, which differs from the results of the 2 carcinogenicity tests by inhalation or intratracheal instillation.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Nanotubes, Carbon , Animals , Carcinogens/toxicity , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mesothelioma/chemically induced , Mesothelioma/pathology , Nanotubes, Carbon/toxicity , Rats , Rats, Inbred F344
6.
Part Fibre Toxicol ; 19(1): 30, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35449069

ABSTRACT

BACKGROUND: Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after pulmonary exposure. METHODS: Rats were divided into six groups: untreated, Vehicle, 3 DWCNT groups (0.12 mg/rat, 0.25 mg/rat and 0.5 mg/rat), and MWCNT-7 (0.5 mg/rat). The test materials were administrated by intratracheal-intrapulmonary spraying (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice. RESULTS: DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a significant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher (p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated with DWCNT, one in the 0.25 mg group and one in the 0.5 mg group, developed pleural mesotheliomas. However, both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. This indicates that the mechanism by which the mesotheliomas that developed in the DWCNT treated rats is not relevant to humans. CONCLUSIONS: Our results demonstrate that the DWCNT fibers we tested are biopersistent in the rat lung and induce chronic inflammation. Rats treated with 0.5 mg DWCNT developed pleural fibrosis and lung tumors. These findings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and tumorigenic cannot be ignored.


Subject(s)
Lung Neoplasms , Mesothelioma , Nanotubes, Carbon , Animals , Inhalation Exposure/adverse effects , Lung , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mesothelioma/pathology , Nanotubes, Carbon/toxicity , Pleura , Rats
7.
Cancer Sci ; 112(6): 2185-2198, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33665882

ABSTRACT

A rat model of mesothelioma development by peritoneal injection of multiwalled carbon nanotube (MWCNT) has been established and found to be useful to understand the mechanisms underlying fibrous particles-associated carcinogenesis. Its detailed histological sequence, however, remains largely obscure. We therefore aimed to assess the time-course of mesothelioma development by MWCNT and evaluate a set of lipoprotein-related molecules as potential mechanism-based biomarkers for the phenomenon. Male Fischer 344 rats were injected intraperitoneally (ip) with MWCNT (MWNT-7) at 1 mg/kg body weight, and necropsied at 8, 16, 24, 32, or 42 wk after injection. For biochemical analyses of the lipoprotein-related molecules, more samples, including severe mesothelioma cases, were obtained from 2 other carcinogenicity tests. Histologically, in association with chronic inflammation, mesothelial proliferative lesions appeared at c. Wk-24. Before and at the beginning of the tumor development, a prominent infiltration of CD163-positive cells was seen near mesothelial cells. The histological pattern of early mesothelioma was not a papillary structure, but was a characteristic structure with a spherical appearance, composed of the mesothelioma cells in the surface area that were underlain by connective tissue-like cells. Along with the progression, mesotheliomas started to show versatile histological subtypes. Serum levels of apolipoprotein A-I and A-IV, and a ratio of HDL cholesterol to total cholesterol were inversely correlated with mesothelioma severity. Overall, the detailed histological sequence of mesotheliomagenesis by MWCNT is demonstrated, and indicated that the altered profile of apolipoproteins may be involved in its underlying mechanisms.


Subject(s)
Apolipoproteins/metabolism , Carcinogens/toxicity , Mesothelioma/pathology , Nanotubes, Carbon/toxicity , Animals , Ascitic Fluid/metabolism , Biomarkers, Tumor/metabolism , Carcinogenesis , Cholesterol/metabolism , Male , Mesothelioma/chemically induced , Mesothelioma/metabolism , Rats , Rats, Inbred F344
8.
Part Fibre Toxicol ; 17(1): 48, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33054855

ABSTRACT

BACKGROUND: Multi-walled carbon nanotubes can be divided into two general subtypes: tangled and straight. MWCNT-N (60 nm in diameter) and MWCNT-7 (80-90 nm in diameter) are straight-type MWCNTs, and similarly to asbestos, both are carcinogenic to the lung and pleura when administered to rats via the airway. Injection of straight-type MWCNTs into the peritoneal cavity also induces the development of mesothelioma, however, injection of tangled-type MWCNTs into the peritoneal cavity does not induce carcinogenesis. To investigate these effects in the lung we conducted a 2-year comparative study of the potential carcinogenicities of a straight-type MWCNT, MWCNT-A (approximately 150 nm in diameter), and a tangled-type MWCNT, MWCNT-B (7.4 nm in diameter) after administration into the rat lung. Crocidolite asbestos was used as the reference material, and rats administered vehicle were used as the controls. Test materials were administered by intra-Tracheal Intra-Pulmonary Spraying (TIPS) once a week over a 7 week period (8 administrations from day 1 to day 50), followed by a 2-year observation period without further treatment. Rats were administered total doses of 0.5 or 1.0 mg MWCNT-A and MWCNT-B or 1.0 mg asbestos. RESULTS: There was no difference in survival between any of the groups. The rats administered MWCNT-A or asbestos did not have a significant increase in bronchiolo-alveolar hyperplasia or tumors in the lung. However, the rats administered MWCNT-B did have significantly elevated incidences of bronchiolo-alveolar hyperplasia and tumors in the lung: the incidence of bronchiolo-alveolar hyperplasia was 0/20, 6/20, and 9/20 in the vehicle, 0.5 mg MWCNT-B, and 1.0 mg MWCNT-B groups, respectively, and the incidence of adenoma and adenocarcinoma combined was 1/19, 5/20, and 7/20 in the vehicle, 0.5 mg MWCNT-B, and 1.0 mg MWCNT-B groups, respectively. Malignant pleural mesothelioma was not induced in any of the groups. CONCLUSIONS: The results of this initial study indicate that tangled-type MWCNT-B is carcinogenic to the rat lung when administered via the airway, and that straight-type MWCNT-A did not have higher carcinogenic potential in the rat lung than tangled-type MWCNT-B.


Subject(s)
Air Pollutants/toxicity , Nanotubes, Carbon/toxicity , Animals , Asbestos, Crocidolite , Carcinogenicity Tests , Inhalation Exposure , Lung , Lung Neoplasms , Mesothelioma , Rats , Trachea/drug effects
10.
Mol Pharmacol ; 96(5): 600-608, 2019 11.
Article in English | MEDLINE | ID: mdl-31455676

ABSTRACT

Induction of cytochrome P450 enzyme 3A (CYP3A) in response to pregnane X receptor (PXR) activators shows species-specific differences. To study the induction of human CYP3A in response to human PXR activators, we generated a double-humanized mouse model of PXR and CYP3A. CYP3A-humanized mice generated by using a mouse artificial chromosome (MAC) vector containing the entire genomic human CYP3A locus (hCYP3A-MAC mouse line) were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR, resulting in double-humanized mice (hCYP3A-MAC/hPXR mouse line). Oral administration of the human PXR activator rifampicin increased hepatic expression of CYP3A4 mRNA and triazolam (TRZ) 1'- and 4-hydroxylation activities, CYP3A probe activities, in the liver and intestine microsomes of hCYP3A-MAC/hPXR mice. The plasma concentration of TRZ after oral dosing was significantly decreased by rifampicin treatment in hCYP3A-MAC/hPXR mice but not in hCYP3A-MAC mice. In addition, mass spectrometry imaging analysis showed that rifampicin treatment increased the formation of hydroxy TRZ in the intestine of hCYP3A-MAC/hPXR mice after oral dosing of TRZ. The plasma concentration of 1'- and 4-hydroxy TRZ in portal blood was also increased by rifampicin treatment in hCYP3A-MAC/hPXR mice. These results suggest that the hCYP3A-MAC/hPXR mouse line may be a useful model to predict human PXR-dependent induction of metabolism of CYP3A4 substrates in the liver and intestine. SIGNIFICANCE STATEMENT: We generated a double-humanized mouse line for CYP3A and PXR. Briefly, CYP3A-humanized mice generated by using a mouse artificial chromosome vector containing the entire genomic human CYP3A locus were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR. Expression of CYP3A4 and metabolism of triazolam, a typical CYP3A substrate, in the liver of CYP3A/PXR-humanized mice were enhanced in response to rifampicin, a typical human PXR activator. Enhancement of triazolam metabolism in the intestine of CYP3A/PXR-humanized mice was firstly shown by combination of mass spectrometry imaging of sliced intestine and liquid chromatography with tandem mass spectrometry analysis of metabolite concentration in portal blood after oral dosing of triazolam.


Subject(s)
Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Intestine, Small/metabolism , Liver/metabolism , Portal Vein/metabolism , Pregnane X Receptor/biosynthesis , Animals , Enzyme Induction/drug effects , Enzyme Induction/physiology , Humans , Intestine, Small/drug effects , Liver/drug effects , Mass Spectrometry/methods , Mice , Mice, Knockout , Mice, Transgenic , Portal Vein/drug effects
11.
Part Fibre Toxicol ; 16(1): 34, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477126

ABSTRACT

BACKGROUND: Potassium octatitanate fibers (K2O•8TiO2, POT fibers) are used as an asbestos substitute. Their physical characteristics suggest that respirable POT fibers are likely to be carcinogenic in the lung and pleura. However, previous 2-year inhalation studies reported that respired POT fibers had little or no carcinogenic potential. In the present study ten-week old male F344 rats were left untreated or were administered vehicle, 0.25 or 0.5 mg rutile-type nano TiO2 (r-nTiO2), 0.25 or 0.5 mg POT fibers, or 0.5 mg MWCNT-7 by intra-tracheal intra-pulmonary spraying (TIPS), and then observed for 2 years. RESULTS: There were no differences between the r-nTiO2 and control groups. The incidence of bronchiolo-alveolar cell hyperplasia was significantly increased in the groups treated with 0.50 mg POT and 0.50 mg MWCNT-7. The overall incidence of lung tumors, however, was not increased in either the POT or MWCNT-7 treated groups. Notably, the carcinomas that developed in the POT and MWCNT-7 treated rats were accompanied by proliferative fibrous connective tissue while the carcinomas that developed in the untreated rats and the r-nTiO2 treated rats were not (carcinomas did not develop in the vehicle control rats). In addition, the carcinoma that developed in the rat treated with 0.25 mg POT was a squamous cell carcinoma, a tumor that develops spontaneously in about 1 per 1700 rats. The incidence of mesothelial cell hyperplasia was 4/17, 7/16, and 10/14 and the incidence of malignant mesothelioma was 3/17, 1/16, and 2/14 in the 0.25 mg POT, 0.5 mg POT, and MWCNT-7 treated groups, respectively. Neither mesothelial cell hyperplasia nor mesothelioma developed in control rats or the rats treated with r-nTiO2. Since the incidence of spontaneously occurring malignant mesothelioma in rats is extremely low, approximately 1 per 1000 animals (Japan Bioassay Research Center [JBRC] historical control data), the development of multiple malignant mesotheliomas in the POT and MWCNT-7 treated groups was biologically significant. CONCLUSION: The incidence of pleural mesotheliomas in male F344 rats administered POT fibers and MWCNT-7 was significantly higher than the JBRC historical control data, indicating that the incidence of pleural mesothelioma in the groups administered POT fibers and MWCNT-7 fibers via the airway using TIPS was biologically significant. The incidence of type II epithelial cell hyperplasia and the histology of the carcinomas that developed in the POT treated rats also indicates that respirable POT fibers are highly likely to be carcinogenic in the lungs of male F344 rats.


Subject(s)
Carcinogens/toxicity , Lung Neoplasms/chemically induced , Lung/drug effects , Mesothelioma/chemically induced , Pleura/drug effects , Titanium/toxicity , Animals , Carcinogens/chemistry , Carcinogens/pharmacokinetics , Inhalation Exposure , Lung/pathology , Lung Neoplasms/pathology , Male , Mesothelioma/pathology , Mesothelioma, Malignant , Mineral Fibers , Pleura/pathology , Rats, Inbred F344 , Surface Properties , Tissue Distribution , Titanium/chemistry , Titanium/pharmacokinetics
12.
Arch Toxicol ; 93(4): 909-920, 2019 04.
Article in English | MEDLINE | ID: mdl-30759267

ABSTRACT

Potassium octatitanate (K2O·8TiO2, POT) fibers are used as an alternative to asbestos. Their shape and biopersistence suggest that they are possibly carcinogenic. However, inhalation studies have shown that respired POT fibers have little carcinogenic potential. We conducted a short-term study in which we administered POT fibers, and anatase and rutile titanium dioxide nanoparticles (a-nTiO2, r-nTiO2) to rats using intra-tracheal intra-pulmonary spraying (TIPS). We found that similarly to other materials, POT fibers were more toxic than non-fibrous nanoparticles of the same chemical composition, indicating that the titanium dioxide composition of POT fibers does not appear to account for their lack of carcinogenicity. The present report describes the results of the 3-week and 52-week interim killing of our current 2-year study of POT fibers, with MWCNT-7 as a positive control and r-nTiO2 as a non-fibrous titanium dioxide control. Male F344 rats were administered 0.5 ml vehicle, 62.5 µg/ml and 125 µg/ml r-nTiO2 and POT fibers, and 125 µg/ml MWCNT-7 by TIPS every other day for 2 weeks (eight doses: total doses of 0.25 and 0.50 mg/rat). At 1 year, POT and MWCNT-7 fibers induced significant increases in alveolar macrophage number, granulation tissue in the lung, bronchiolo-alveolar cell hyperplasia and thickening of the alveolar wall, and pulmonary 8-OHdG levels. The 0.5 mg POT- and the MWCNT-7-treated groups also had increased visceral and parietal pleura thickness, increased mesothelial cell PCNA labeling indices, and a few areas of visceral mesothelial cell hyperplasia. In contrast, in the r-nTiO2-treated groups, none of the measured parameters were different from the controls.


Subject(s)
Lung/drug effects , Nanoparticles/toxicity , Nanotubes, Carbon/toxicity , Pleura/drug effects , Titanium/toxicity , Animals , Inhalation Exposure , Lung/metabolism , Lung/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/ultrastructure , Male , Organ Size/drug effects , Pleura/metabolism , Pleura/pathology , Rats, Inbred F344 , Tissue Distribution , Titanium/pharmacokinetics
13.
Cancer Sci ; 109(7): 2164-2177, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29774637

ABSTRACT

Potassium octatitanate fibers (K2 O·8TiO2 , POT fibers) are widely used as an alternative to asbestos. We investigated the pulmonary and pleural toxicity of POT fibers with reference to 2 non-fibrous titanium dioxide nanoparticles (nTiO2 ), photoreactive anatase (a-nTiO2 ) and inert rutile (r-nTiO2 ). Ten-week-old male F344 rats were given 0.5 mL of 250 µg/mL suspensions of POT fibers, a-nTiO2 , or r-nTiO2 , 8 times (1 mg/rat) over a 15-day period by trans-tracheal intrapulmonary spraying (TIPS). Rats were killed at 6 hours and at 4 weeks after the last TIPS dose. Alveolar macrophages were significantly increased in all treatment groups at 6 hours and at 4 weeks. At week 4, a-nTiO2 and r-nTiO2 were largely cleared from the lung whereas a major fraction of POT fibers were not cleared. In the bronchoalveolar lavage, alkaline phosphatase activity was elevated in all treatment groups, and lactate dehydrogenase (LDH) activity was elevated in the a-nTiO2 and POT groups. In lung tissue, oxidative stress index and proliferating cell nuclear antigen (PCNA) index were elevated in the a-nTiO2 and POT groups, and there was a significant elevation in C-C motif chemokine ligand 2 (CCL2) mRNA and protein in the POT group. In pleural cavity lavage, total protein was elevated in all 3 treatment groups, and LDH activity was elevated in the a-nTiO2 and POT groups. Importantly, the PCNA index of the visceral mesothelium was increased in the POT group. Overall, POT fibers had greater biopersistence, induced higher expression of CCL2, and provoked a stronger tissue response than a-nTiO2 or r-nTiO2 .


Subject(s)
Lung/drug effects , Lung/pathology , Pleura/drug effects , Pleura/pathology , Titanium/toxicity , Animals , Macrophages, Alveolar/drug effects , Male , Mineral Fibers/toxicity , Rats , Rats, Inbred F344
14.
Chem Res Toxicol ; 31(10): 1025-1031, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30212183

ABSTRACT

Translocation of multiwalled carbon nanotubes (MWCNTs) from the lung to the pleural cavity, deposition of the fibers in the pleural tissue, induction of pleural fibrosis, and mesothelial proliferation have been found in rodents administered MWCNTs by different pulmonary exposure methods. However, whether the translocation and deposition and the subsequent pleural inflammation are associated with the pleural lesions is unclear. In the present study, male F344 rats were given 250 µg of two types of MWCNTs, with crocidolite as a positive control, 2 times/week for 4 weeks by intratracheal spraying. At 24 h and at 3 months after the last spraying, the rats were sacrificed for histological examination of the lung and chest wall; pleural cavity lavage was also collected at sacrifice for observation of pleural inflammatory reactions. The results indicated that intratracheally sprayed MWCNTs, like crocidolite fibers, translocated into the pleural cavity, deposited in the pleura, and induced persistent infiltration of immune cells into the pleural cavity, persistent pleural fibrosis, and mesothelial proliferation. The number of MWCNT fibers detected in the pleural cavity lavage was parallel to the number of infiltrating immune cells, which were mainly composed of macrophages. Analysis of cytokines in the fluids of the pleural cavity lavages by suspension array indicated that levels of IL-2, IL-18, and IP-10 were significantly increased both at 24 h and at 3 months after the last spraying. In vitro proliferation assays revealed that a mixture of IL-2, IL-18, and IP-10, but not any of these cytokines alone, promoted cell proliferation of human fibroblasts and mesothelial cells. These results suggest that translocated and deposited MWCNTs induce subsequent pleural inflammation and that increased IL-2, IL-18, and IP-10 synergistically promote the development of pleural fibrosis and mesothelial proliferation.


Subject(s)
Inflammation , Nanotubes, Carbon/toxicity , Pleura/drug effects , Animals , Asbestos, Crocidolite/toxicity , Bronchoalveolar Lavage Fluid/chemistry , Cell Line , Cell Proliferation/drug effects , Cytokines/analysis , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fibrosis , Humans , Inflammation/etiology , Male , Nanotubes, Carbon/chemistry , Pleura/metabolism , Pleura/pathology , Rats , Rats, Inbred F344
15.
Development ; 141(11): 2260-70, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24821986

ABSTRACT

Retinoic acid receptor gamma 2 (RARγ2) is the major RAR isoform expressed throughout the caudal axial progenitor domain in vertebrates. During a microarray screen to identify RAR targets, we identified a subset of genes that pattern caudal structures or promote axial elongation and are upregulated by increased RAR-mediated repression. Previous studies have suggested that RAR is present in the caudal domain, but is quiescent until its activation in late stage embryos terminates axial elongation. By contrast, we show here that RARγ2 is engaged in all stages of axial elongation, not solely as a terminator of axial growth. In the absence of RA, RARγ2 represses transcriptional activity in vivo and maintains the pool of caudal progenitor cells and presomitic mesoderm. In the presence of RA, RARγ2 serves as an activator, facilitating somite differentiation. Treatment with an RARγ-selective inverse agonist (NRX205099) or overexpression of dominant-negative RARγ increases the expression of posterior Hox genes and that of marker genes for presomitic mesoderm and the chordoneural hinge. Conversely, when RAR-mediated repression is reduced by overexpressing a dominant-negative co-repressor (c-SMRT), a constitutively active RAR (VP16-RARγ2), or by treatment with an RARγ-selective agonist (NRX204647), expression of caudal genes is diminished and extension of the body axis is prematurely terminated. Hence, gene repression mediated by the unliganded RARγ2-co-repressor complex constitutes a novel mechanism to regulate and facilitate the correct expression levels and spatial restriction of key genes that maintain the caudal progenitor pool during axial elongation in Xenopus embryos.


Subject(s)
Gene Expression Regulation, Developmental , Receptors, Retinoic Acid/metabolism , Animals , Apoptosis , Cell Differentiation/genetics , Co-Repressor Proteins/metabolism , Gene Expression Regulation , Genes, Dominant , Homeodomain Proteins/metabolism , Humans , Mesoderm/metabolism , Mesoderm/physiology , Nervous System/embryology , Nervous System/growth & development , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Receptors, Retinoic Acid/agonists , Repressor Proteins/metabolism , Retinoic Acid Receptor alpha , Signal Transduction , Somites/physiology , Time Factors , Xenopus Proteins/metabolism , Xenopus laevis , Retinoic Acid Receptor gamma
16.
EMBO Rep ; 16(2): 192-201, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25527407

ABSTRACT

Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B-which we identify as an endogenous substrate of acetylated ubiquitin-and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.


Subject(s)
Polyubiquitin/metabolism , Ubiquitin/metabolism , Acetylation , Humans , Protein Processing, Post-Translational , Ubiquitination
17.
Nature ; 480(7378): 557-60, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-22121020

ABSTRACT

Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation.


Subject(s)
Acetylglucosamine/metabolism , Histones/metabolism , Amino Acid Sequence , Animals , Cell Line , HeLa Cells , Histones/chemistry , Histones/genetics , Humans , Models, Molecular , Mutation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ubiquitination
18.
Regul Toxicol Pharmacol ; 91 Suppl 1: S3-S13, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28958911

ABSTRACT

Prevailing knowledge gaps in linking specific molecular changes to apical outcomes and methodological uncertainties in the generation, storage, processing, and interpretation of 'omics data limit the application of 'omics technologies in regulatory toxicology. Against this background, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop Applying 'omics technologies in chemicals risk assessment that is reported herein. Ahead of the workshop, multi-expert teams drafted frameworks on best practices for (i) a Good-Laboratory Practice-like context for collecting, storing and curating 'omics data; (ii) the processing of 'omics data; and (iii) weight-of-evidence approaches for integrating 'omics data. The workshop participants confirmed the relevance of these Frameworks to facilitate the regulatory applicability and use of 'omics data, and the workshop discussions provided input for their further elaboration. Additionally, the key objective (iv) to establish approaches to connect 'omics perturbations to phenotypic alterations was addressed. Generally, it was considered promising to strive to link gene expression changes and pathway perturbations to the phenotype by mapping them to specific adverse outcome pathways. While further work is necessary before gene expression changes can be used to establish safe levels of substance exposure, the ECETOC workshop provided important incentives towards achieving this goal.


Subject(s)
Congresses as Topic , Ecotoxicology/methods , Education/methods , Genomics/methods , Metabolomics/methods , Research Report , Animals , Congresses as Topic/trends , Ecotoxicology/trends , Education/trends , Europe , Genomics/trends , Humans , Metabolomics/trends , Proteomics/methods , Proteomics/trends , Research Report/trends , Risk Assessment , Spain
19.
Cancer Sci ; 107(7): 924-35, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27098557

ABSTRACT

Multiwalled carbon nanotubes (MWCNT) have a fibrous structure and physical properties similar to asbestos and have been shown to induce malignant mesothelioma of the peritoneum after injection into the scrotum or peritoneal cavity in rats and mice. For human cancer risk assessment, however, data after administration of MWCNT via the airway, the exposure route that is most relevant to humans, is required. The present study was undertaken to investigate the carcinogenicity of MWCNT-N (NIKKISO) after administration to the rat lung. MWCNT-N was fractionated by passing it through a sieve with a pore size of 25 µm. The average lengths of the MWCNT were 4.2 µm before filtration and 2.6 µm in the flow-through fraction; the length of the retained MWCNT could not be determined. For the present study, 10-week-old F344/Crj male rats were divided into five groups: no treatment, vehicle control, MWCNT-N before filtration, MWCNT-N flow-through and MWCNT-N retained groups. Administration was by the trans-tracheal intrapulmonary spraying (TIPS) method. Rats were administered a total of 1 mg/rat during the initial 2 weeks of the experiment and then observed up to 109 weeks. The incidences of malignant mesothelioma and lung tumors (bronchiolo-alveolar adenomas and carcinomas) were 6/38 and 14/38, respectively, in the three groups administered MWCNT and 0/28 and 0/28, respectively, in the control groups. All malignant mesotheliomas were localized in the pericardial pleural cavity. The sieve fractions did not have a significant effect on tumor incidence. In conclusion, administration of MWCNT to the lung in the rat induces malignant mesothelioma and lung tumors.


Subject(s)
Carcinogenesis/chemically induced , Lung Neoplasms/chemically induced , Lung/metabolism , Mesothelioma/chemically induced , Nanotubes, Carbon/adverse effects , Particle Size , Pleural Neoplasms/chemically induced , Trachea/metabolism , Animals , Incidence , Inflammation/chemically induced , Male , Nanotubes, Carbon/chemistry , Organ Specificity , Rats
20.
Biol Pharm Bull ; 39(12): 1939-1947, 2016.
Article in English | MEDLINE | ID: mdl-27904036

ABSTRACT

Chronic lipopolysaccharide (LPS) exposure to mice reduces the lymphoid compartment and skews the hematopoietic cell compartment toward myeloid-cells, which is considered to be a direct effect of LPS on hematopoietic stem cells. However, the effect of chronic LPS exposure on stromal-cells, which compose the hematopoietic microenvironment, has not been elucidated. Here, we investigated early- and late-phase effects of repeated LPS exposure on stromal-cells. During the early phase, when mice were treated with 5 or 25 µg LPS three times at weekly intervals, the numbers of myeloid-progenitor (colony forming unit-granulocyte macrophage (CFU-GM)) cells and B lymphoid-progenitor (CFU-preB) cells in the bone-marrow (BM) rapidly decreased after each treatment. The number of CFU-GM cells recovered from the initial decrease and then increased to levels higher than pretreatment levels, whereas the number of CFU-preB cells remained lower than pretreatment levels. In the BM, expression of genes for positive-regulators of myelopoiesis including granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-6 and negative-regulators of B lymphopoiesis including tumor necrosis factor (TNF)-α was up-regulated, whereas expression of positive-regulators of B lymphopoiesis including stromal cell-derived factor (SDF)-1, IL-7, and stem cell factor (SCF) was down-regulated. During the late phase, the number of CFU-preB cells remained lower than pretreatment levels 70 d after the first treatments with 5 and 25 µg LPS, whereas the number of CFU-GM cells returned to pretreatment levels. IL-7 gene expression in the BM remained down-regulated, whereas gene-expression levels of SDF-1 and SCF were restored. Thus, chronic LPS exposure may impair stromal-cell function, resulting in prolonged suppression of B lymphopoiesis, which may appear to be senescence similar to the hematological phenotype.


Subject(s)
Lipopolysaccharides/pharmacology , Lymphopoiesis/drug effects , Myelopoiesis/drug effects , Stromal Cells/drug effects , Animals , Cells, Cultured , Cytokines/genetics , Gene Expression/drug effects , Granulocyte-Macrophage Progenitor Cells/cytology , Leukocyte Count , Lymphopoiesis/physiology , Male , Mice, Inbred BALB C , Myelopoiesis/physiology , Precursor Cells, B-Lymphoid/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL