Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Blood ; 143(21): 2190-2200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38306657

ABSTRACT

ABSTRACT: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, caused by somatic mutations in UBA1, is an autoinflammatory disorder with diverse systemic manifestations. Thrombosis is a prominent clinical feature of VEXAS syndrome. The risk factors and frequency of thrombosis in VEXAS syndrome are not well described, due to the disease's recent discovery and the paucity of large databases. We evaluated 119 patients with VEXAS syndrome for venous and arterial thrombosis and correlated their presence with clinical outcomes and survival. Thrombosis occurred in 49% of patients, mostly venous thromboembolism (VTE; 41%). Almost two-thirds of VTEs were unprovoked, 41% were recurrent, and 20% occurred despite anticoagulation. The cumulative incidence of VTE was 17% at 1 year from symptom onset and 40% by 5 years. Cardiac and pulmonary inflammatory manifestations were associated with time to VTE. M41L was positively associated specifically with pulmonary embolism by univariate (odds ratio [OR]: 4.58, confidence interval [CI] 1.28-16.21, P = .02) and multivariate (OR: 16.94, CI 1.99-144.3, P = .01) logistic regression. The cumulative incidence of arterial thrombosis was 6% at 1 year and 11% at 5 years. The overall survival of the entire patient cohort at median follow-up time of 4.8 years was 88%, and there was no difference in survival between patients with or without thrombosis (P = .8). Patients with VEXAS syndrome are at high risk of VTE; thromboprophylaxis should administered be in high-risk settings unless strongly contraindicated.


Subject(s)
Thrombosis , Humans , Male , Female , Adult , Middle Aged , Thrombosis/etiology , Thrombosis/genetics , Thrombosis/epidemiology , Adolescent , Ubiquitin-Activating Enzymes/genetics , Young Adult , Risk Factors , Aged , Child , Venous Thrombosis/etiology , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics , Incidence , Mutation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/complications , Child, Preschool
2.
Blood ; 141(7): 725-742, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36493338

ABSTRACT

Coronavirus-associated coagulopathy (CAC) is a morbid and lethal sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CAC results from a perturbed balance between coagulation and fibrinolysis and occurs in conjunction with exaggerated activation of monocytes/macrophages (MO/Mφs), and the mechanisms that collectively govern this phenotype seen in CAC remain unclear. Here, using experimental models that use the murine betacoronavirus MHVA59, a well-established model of SARS-CoV-2 infection, we identify that the histone methyltransferase mixed lineage leukemia 1 (MLL1/KMT2A) is an important regulator of MO/Mφ expression of procoagulant and profibrinolytic factors such as tissue factor (F3; TF), urokinase (PLAU), and urokinase receptor (PLAUR) (herein, "coagulopathy-related factors") in noninfected and infected cells. We show that MLL1 concurrently promotes the expression of the proinflammatory cytokines while suppressing the expression of interferon alfa (IFN-α), a well-known inducer of TF and PLAUR. Using in vitro models, we identify MLL1-dependent NF-κB/RelA-mediated transcription of these coagulation-related factors and identify a context-dependent, MLL1-independent role for RelA in the expression of these factors in vivo. As functional correlates for these findings, we demonstrate that the inflammatory, procoagulant, and profibrinolytic phenotypes seen in vivo after coronavirus infection were MLL1-dependent despite blunted Ifna induction in MO/Mφs. Finally, in an analysis of SARS-CoV-2 positive human samples, we identify differential upregulation of MLL1 and coagulopathy-related factor expression and activity in CD14+ MO/Mφs relative to noninfected and healthy controls. We also observed elevated plasma PLAU and TF activity in COVID-positive samples. Collectively, these findings highlight an important role for MO/Mφ MLL1 in promoting CAC and inflammation.


Subject(s)
COVID-19 , Histone-Lysine N-Methyltransferase , Animals , Humans , Mice , COVID-19/complications , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Inflammation/metabolism , Monocytes/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , SARS-CoV-2/metabolism , Urokinase-Type Plasminogen Activator/metabolism
3.
Cytometry A ; 103(2): 162-167, 2023 02.
Article in English | MEDLINE | ID: mdl-35938513

ABSTRACT

There is a global concern about the safety of COVID-19 vaccines associated with platelet function. However, their long-term effects on overall platelet activity remain poorly understood. Here we address this problem by image-based single-cell profiling and temporal monitoring of circulating platelet aggregates in the blood of healthy human subjects, before and after they received multiple Pfizer-BioNTech (BNT162b2) vaccine doses over a time span of nearly 1 year. Results show no significant or persisting platelet aggregation trends following the vaccine doses, indicating that any effects of vaccinations on platelet turnover, platelet activation, platelet aggregation, and platelet-leukocyte interaction was insignificant.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , COVID-19/prevention & control , Blood Platelets , Vaccination/adverse effects
4.
Blood ; 137(9): 1208-1218, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33181835

ABSTRACT

Previous reports indicate that IL18 is a novel candidate gene for diastolic dysfunction in sickle cell disease (SCD)-related cardiomyopathy. We hypothesize that interleukin-18 (IL-18) mediates the development of cardiomyopathy and ventricular tachycardia (VT) in SCD. Compared with control mice, a humanized mouse model of SCD exhibited increased cardiac fibrosis, prolonged duration of action potential, higher VT inducibility in vivo, higher cardiac NF-κB phosphorylation, and higher circulating IL-18 levels, as well as reduced voltage-gated potassium channel expression, which translates to reduced transient outward potassium current (Ito) in isolated cardiomyocytes. Administering IL-18 to isolated mouse hearts resulted in VT originating from the right ventricle and further reduced Ito in SCD mouse cardiomyocytes. Sustained IL-18 inhibition via IL-18-binding protein resulted in decreased cardiac fibrosis and NF-κB phosphorylation, improved diastolic function, normalized electrical remodeling, and attenuated IL-18-mediated VT in SCD mice. Patients with SCD and either myocardial fibrosis or increased QTc displayed greater IL18 gene expression in peripheral blood mononuclear cells (PBMCs), and QTc was strongly correlated with plasma IL-18 levels. PBMC-derived IL18 gene expression was increased in patients who did not survive compared with those who did. IL-18 is a mediator of sickle cell cardiomyopathy and VT in mice and a novel therapeutic target in patients at risk for sudden death.


Subject(s)
Anemia, Sickle Cell/complications , Cardiomyopathies/etiology , Interleukin-18/blood , Tachycardia, Ventricular/etiology , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/physiopathology , Animals , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Cardiomyopathies/blood , Cardiomyopathies/physiopathology , Humans , Interleukin-18/analysis , Male , Mice , Tachycardia, Ventricular/blood , Tachycardia, Ventricular/physiopathology , Young Adult
5.
Circ Res ; 128(12): 2017-2036, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34110909

ABSTRACT

The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.


Subject(s)
Infections/complications , Inflammation/complications , Venous Thromboembolism/etiology , Adaptive Immunity , Blood Coagulation/physiology , Blood Platelets/physiology , Endothelium, Vascular/physiology , Extracellular Traps , Extracellular Vesicles/physiology , Fibrinolysis , Hematopoiesis , Hemostasis/physiology , Humans , Immune System/physiology , Leukocytes/physiology , Monocytes/physiology , Neutrophils/physiology , Venous Thromboembolism/prevention & control , Venous Thromboembolism/therapy
6.
J Vasc Interv Radiol ; 33(1): 78-85, 2022 01.
Article in English | MEDLINE | ID: mdl-34563699

ABSTRACT

The optimal medical management of patients following endovascular deep venous interventions remains ill-defined. As such, the Society of Interventional Radiology Foundation (SIRF) convened a multidisciplinary group of experts in a virtual Research Consensus Panel (RCP) to develop a prioritized research agenda regarding antithrombotic therapy following deep venous interventions. The panelists presented the gaps in knowledge followed by discussion and ranking of research priorities based on clinical relevance, overall impact, and technical feasibility. The following research topics were identified as high priority: 1) characterization of biological processes leading to in-stent stenosis/rethrombosis; 2) identification and validation of methods to assess venous flow dynamics and their effect on stent failure; 3) elucidation of the role of inflammation and anti-inflammatory therapies; and 4) clinical studies to compare antithrombotic strategies and improve venous outcome assessment. Collaborative, multicenter research is necessary to answer these questions and thereby enhance the care of patients with venous disease.


Subject(s)
Radiology, Interventional , Vascular Diseases , Consensus , Humans , Research , Vascular Diseases/diagnostic imaging , Vascular Diseases/therapy , Vascular Surgical Procedures
7.
Curr Opin Pulm Med ; 27(5): 342-349, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34127622

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID-19) pandemic has led to almost 3,000,000 deaths across 139 million people infected worldwide. Involvement of the pulmonary vasculature is considered a major driving force for morbidity and mortality. We set out to summarize current knowledge on the acute manifestations of pulmonary vascular disease (PVD) resulting from COVID-19 and prioritize long-term complications that may result in pulmonary hypertension (PH). RECENT FINDINGS: Acute COVID-19 infection can result in widespread involvement of the pulmonary vasculature, myocardial injury, evidence of persistent lung disease, and venous thromboembolism. Post COVID-19 survivors frequently report ongoing symptoms and may be at risk for the spectrum of PH, including group 1 pulmonary arterial hypertension, group 2 PH due to left heart disease, group 3 PH due to lung disease and/or hypoxia, and group 4 chronic thromboembolic PH. SUMMARY: The impact of COVID-19 on the pulmonary vasculature is central to determining disease severity. Although the long-term PVD manifestations of COVID-19 are currently uncertain, optimizing the care of risk factors for PH and monitoring for the development of PVD will be critical to reducing long-term morbidity and improving the health of survivors.


Subject(s)
COVID-19 , Lung Diseases , Vascular Diseases , Humans , Pandemics , Pulmonary Circulation , SARS-CoV-2
8.
J Thromb Thrombolysis ; 51(2): 446-453, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33151461

ABSTRACT

Studies of patients with COVID-19 have demonstrated markedly dysregulated coagulation and a high risk of morbid arterial and venous thrombotic events. Elevated levels of blood neutrophils and neutrophil extracellular traps (NETs) have recently been described in patients with COVID-19. However, their potential role in COVID-19-associated thrombosis remains incompletely understood. In order to elucidate the potential role of hyperactive neutrophils and NET release in COVID-19-associated thrombosis, we conducted a case-control study of patients hospitalized with COVID-19 who developed thrombosis, as compared with gender- and age-matched COVID-19 patients without clinical thrombosis. We found that remnants of NETs (cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated histone H3) and neutrophil-derived S100A8/A9 (calprotectin) in patient sera were associated with higher risk of morbid thrombotic events in spite of prophylactic anticoagulation. These observations underscore the need for urgent investigation into the potential relationship between NETs and unrelenting thrombosis in COVID-19, as well as novel approaches for thrombosis prevention.


Subject(s)
COVID-19/blood , Extracellular Traps/metabolism , Neutrophils/metabolism , SARS-CoV-2/metabolism , Thrombosis/blood , Adult , Aged , Aged, 80 and over , COVID-19/complications , Case-Control Studies , Female , Histones/blood , Humans , Leukocyte L1 Antigen Complex/blood , Male , Middle Aged , Thrombosis/etiology
9.
Arterioscler Thromb Vasc Biol ; 39(4): e118-e129, 2019 04.
Article in English | MEDLINE | ID: mdl-30816804

ABSTRACT

Objective- Leukocyte flux contributes to thrombus formation in deep veins under pathological conditions, but mechanisms that inhibit venous thrombosis are incompletely understood. Ectonucleotide di(tri)phosphohydrolase 1 ( ENTPD1 or Cd39), an ectoenzyme that catabolizes extracellular adenine nucleotides, is embedded on the surface of endothelial cells and leukocytes. We hypothesized that under venous stasis conditions, CD39 regulates inflammation at the vein:blood interface in a murine model of deep vein thrombosis. Approach and Results- CD39-null mice developed significantly larger venous thrombi under venous stasis, with more leukocyte recruitment compared with wild-type mice. Gene expression profiling of wild-type and Cd39-null mice revealed 76 differentially expressed inflammatory genes that were significantly upregulated in Cd39-deleted mice after venous thrombosis, and validation experiments confirmed high expression of several key inflammatory mediators. P-selectin, known to have proximal involvement in venous inflammatory and thrombotic events, was upregulated in Cd39-null mice. Inferior vena caval ligation resulted in thrombosis and a corresponding increase in both P-selectin and VWF (von Willebrand Factor) levels which were strikingly higher in mice lacking the Cd39 gene. These mice also manifest an increase in circulating platelet-leukocyte heteroaggregates suggesting heterotypic crosstalk between coagulation and inflammatory systems, which is amplified in the absence of CD39. Conclusions- These data suggest that CD39 mitigates the venous thromboinflammatory response to flow interruption.


Subject(s)
Antigens, CD/physiology , Apyrase/physiology , Chemotaxis, Leukocyte/physiology , Hemorheology , Vasculitis/enzymology , Venous Thrombosis/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/genetics , Apyrase/deficiency , Apyrase/genetics , Blood Platelets/physiology , Cell Adhesion , Gene Expression Regulation , Gene Regulatory Networks , Ligation , Mice , Mice, Inbred C57BL , Mice, Knockout , P-Selectin/biosynthesis , P-Selectin/genetics , Receptors, Purinergic P2Y1/metabolism , Vasculitis/physiopathology , Vena Cava, Inferior , Venous Thrombosis/physiopathology , von Willebrand Factor/biosynthesis , von Willebrand Factor/genetics
10.
Vasc Med ; 25(5): 471-478, 2020 10.
Article in English | MEDLINE | ID: mdl-32558620

ABSTRACT

An ongoing global pandemic of viral pneumonia (coronavirus disease [COVID-19]), due to the virus SARS-CoV-2, has infected millions of people and remains a threat to many more. Most critically ill patients have respiratory failure and there is an international effort to understand mechanisms and predictors of disease severity. Coagulopathy, characterized by elevations in D-dimer and fibrin(ogen) degradation products (FDPs), is associated with critical illness and mortality in patients with COVID-19. Furthermore, increasing reports of microvascular and macrovascular thrombi suggest that hemostatic imbalances may contribute to the pathophysiology of SARS-CoV-2 infection. We review the laboratory and clinical findings of patients with COVID-19-associated coagulopathy, and prior studies of hemostasis in other viral infections and acute respiratory distress syndrome. We hypothesize that an imbalance between coagulation and inflammation may result in a hypercoagulable state. Although thrombosis initiated by the innate immune system is hypothesized to limit SARS-CoV-2 dissemination, aberrant activation of this system can cause endothelial injury resulting in loss of thromboprotective mechanisms, excess thrombin generation, and dysregulation of fibrinolysis and thrombosis. The role various components including neutrophils, neutrophil extracellular traps, activated platelets, microparticles, clotting factors, inflammatory cytokines, and complement play in this process remains an area of active investigation and ongoing clinical trials target these different pathways in COVID-19.


Subject(s)
Betacoronavirus , Blood Coagulation Disorders/virology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/therapy , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2
11.
Vasc Med ; 25(1): 63-77, 2020 02.
Article in English | MEDLINE | ID: mdl-32000633

ABSTRACT

Aortic aneurysms were the primary cause of nearly 10,000 deaths in 2014 according to data from the Centers for Disease Control and may involve segments of the thoracic or abdominal aorta. Thoracic aortic aneurysms and dissections are more commonly associated with an underlying genetic etiology. In the past several decades, in parallel with the burst of new genome sequencing technologies, a number of genetic aortopathies have been identified. These have provided important insights into the molecular mechanisms of aneurysmal disease, but pose challenges in clinical practice as there are limited consensus recommendations at this time. In this review, we aim to address the pathophysiology, clinical presentation, and treatment considerations in the key heritable thoracic aortopathies.


Subject(s)
Aortic Aneurysm/diagnosis , Aortic Aneurysm/therapy , Aortic Dissection/diagnosis , Aortic Dissection/therapy , Molecular Diagnostic Techniques , Aortic Dissection/genetics , Aortic Aneurysm/genetics , Clinical Decision-Making , Decision Support Techniques , Genetic Predisposition to Disease , Humans , Phenotype , Predictive Value of Tests , Risk Factors , Treatment Outcome
12.
Arterioscler Thromb Vasc Biol ; 38(7): 1632-1643, 2018 07.
Article in English | MEDLINE | ID: mdl-29748334

ABSTRACT

OBJECTIVE: Platelet activation after stimulation of PAR (protease-activated receptor) 4 is heightened in platelets from blacks compared with those from whites. The difference in PAR4 signaling by race is partially explained by a single-nucleotide variant in PAR4 encoding for either an alanine or threonine at amino acid 120 in the second transmembrane domain. The current study sought to determine whether the difference in PAR4 signaling by this PAR4 variant is because of biased Gq signaling and whether the difference in PAR4 activity results in resistance to traditional antiplatelet intervention. APPROACH AND RESULTS: Membranes expressing human PAR4-120 variants were reconstituted with either Gq or G13 to determine the kinetics of G protein activation. The kinetics of Gq and G13 activation were both increased in membranes expressing PAR4-Thr120 compared with those expressing PAR4-Ala120. Further, inhibiting PAR4-mediated platelet activation by targeting COX (cyclooxygenase) and P2Y12 receptor was less effective in platelets from subjects expressing PAR4-Thr120 compared with PAR4-Ala120. Additionally, ex vivo thrombus formation in whole blood was evaluated at high shear to determine the relationship between PAR4 variant expression and response to antiplatelet drugs. Ex vivo thrombus formation was enhanced in blood from subjects expressing PAR4-Thr120 in the presence or absence of antiplatelet therapy. CONCLUSIONS: Together, these data support that the signaling difference by the PAR4-120 variant results in the enhancement of both Gq and G13 activation and an increase in thrombus formation resulting in a potential resistance to traditional antiplatelet therapies targeting COX-1 and the P2Y12 receptor.


Subject(s)
Aspirin/therapeutic use , Blood Coagulation/drug effects , Blood Platelets/drug effects , Clopidogrel/therapeutic use , Cyclooxygenase Inhibitors/therapeutic use , Drug Resistance , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation/drug effects , Purinergic P2Y Receptor Antagonists/therapeutic use , Receptors, Thrombin/blood , Black or African American/genetics , Blood Coagulation/genetics , Blood Platelets/metabolism , Cyclooxygenase 1/blood , Drug Resistance/genetics , GTP-Binding Protein alpha Subunits, G12-G13/blood , GTP-Binding Protein alpha Subunits, Gq-G11/blood , Genotype , Humans , Kinetics , Pharmacogenomic Variants , Phenotype , Platelet Aggregation/genetics , Polymorphism, Single Nucleotide , Receptors, Purinergic P2Y12/blood , Receptors, Purinergic P2Y12/drug effects , Receptors, Thrombin/genetics , Signal Transduction/drug effects , White People/genetics , rhoA GTP-Binding Protein/blood
13.
Circulation ; 135(24): 2389-2402, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28377485

ABSTRACT

BACKGROUND: Cerebral tissue damage after an ischemic event can be exacerbated by inflammation and thrombosis. Elevated extracellular ATP and ADP levels are associated with cellular injury, inflammation, and thrombosis. Ectonucleoside triphosphate diphosphohydrolase-1 (CD39), an enzyme expressed on the plasmalemma of leukocytes and endothelial cells, suppresses platelet activation and leukocyte infiltration by phosphohydrolyzing ATP/ADP. To investigate the effects of increased CD39 in an in vivo cerebral ischemia model, we developed a transgenic mouse expressing human CD39 (hCD39). METHODS: A floxed-stop sequence was inserted between the promoter and the hCD39 transcriptional start site, generating a mouse in which the expression of hCD39 can be controlled tissue-specifically using Cre recombinase mice. We generated mice that express hCD39 globally or in myeloid-lineage cells only. Cerebral ischemia was induced by middle cerebral artery occlusion. Infarct volumes were quantified by MRI after 48 hours. RESULTS: Both global and transgenic hCD39- and myeloid lineage CD39-overexpressing mice (transgenic, n=9; myeloid lineage, n=6) demonstrated significantly smaller cerebral infarct volumes compared with wild-type mice. Leukocytes from ischemic and contralateral hemispheres were analyzed by flow cytometry. Although contralateral hemispheres had equal numbers of macrophages and neutrophils, ischemic hemispheres from transgenic mice had less infiltration (n=4). Transgenic mice showed less neurological deficit compared with wild-type mice (n=6). CONCLUSIONS: This is the first report of transgenic overexpression of CD39 in mice imparting a protective phenotype after stroke, with reduced leukocyte infiltration, smaller infarct volumes, and decreased neurological deficit. CD39 overexpression, either globally or in myeloid lineage cells, quenches postischemic leukosequestration and reduces stroke-induced neurological injury.


Subject(s)
Antigens, CD/biosynthesis , Antigens, CD/genetics , Apyrase/biosynthesis , Apyrase/genetics , Brain Ischemia/genetics , Brain Ischemia/metabolism , Cell Lineage/physiology , Transgenes/physiology , Animals , Brain Ischemia/prevention & control , Gene Expression , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/physiology
14.
15.
Bioorg Med Chem ; 25(16): 4487-4496, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28705434

ABSTRACT

The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs.


Subject(s)
Folic Acid/pharmacology , Macrophages/chemistry , Nanoparticles/chemistry , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Folic Acid/chemistry , Humans , KB Cells , Mice , Molecular Structure , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , RAW 264.7 Cells , Structure-Activity Relationship , Surface Properties
16.
Am J Physiol Heart Circ Physiol ; 311(1): H286-98, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27208163

ABSTRACT

Despite the fact that nucleotides and adenosine help regulate vascular tone through purinergic signaling pathways, little is known regarding their contributions to the pathobiology of pulmonary arterial hypertension, a condition characterized by elevated pulmonary vascular resistance and remodeling. Even less is known about the potential role that alterations in CD39 (ENTPD1), the ectonucleotidase responsible for the conversion of the nucleotides ATP and ADP to AMP, may play in pulmonary arterial hypertension. In this study we identified decreased CD39 expression on the pulmonary endothelium of patients with idiopathic pulmonary arterial hypertension. We next determined the effects of CD39 gene deletion in mice exposed to normoxia or normobaric hypoxia (10% oxygen). Compared with controls, hypoxic CD39(-/-) mice were found to have a markedly elevated ATP-to-adenosine ratio, higher pulmonary arterial pressures, more right ventricular hypertrophy, more arterial medial hypertrophy, and a pro-thrombotic phenotype. In addition, hypoxic CD39(-/-) mice exhibited a marked increase in lung P2X1 receptors. Systemic reconstitution of ATPase and ADPase enzymatic activities through continuous administration of apyrase decreased pulmonary arterial pressures in hypoxic CD39(-/-) mice to levels found in hypoxic CD39(+/+) controls. Treatment with NF279, a potent and selective P2X1 receptor antagonist, lowered pulmonary arterial pressures even further. Our study is the first to implicate decreased CD39 and resultant alterations in circulating purinergic signaling ligands and cognate receptors in the pathobiology of pulmonary arterial hypertension. Reconstitution and receptor blocking experiments suggest that phosphohydrolysis of purinergic nucleotide tri- and diphosphates, or blocking of the P2X1 receptor could serve as treatment for pulmonary arterial hypertension.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Hypertension, Pulmonary/metabolism , Lung/metabolism , Pulmonary Artery/metabolism , Receptors, Purinergic P2X1/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/genetics , Antihypertensive Agents/pharmacology , Apyrase/deficiency , Apyrase/genetics , Apyrase/pharmacology , Arterial Pressure , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Hydrolysis , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Hypoxia/complications , Lung/drug effects , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pulmonary Artery/drug effects , Pulmonary Artery/physiopathology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X1/drug effects , Severity of Illness Index , Signal Transduction , Suramin/analogs & derivatives , Suramin/pharmacology , Vascular Remodeling , Ventricular Remodeling
17.
J Vasc Res ; 53(3-4): 186-195, 2016.
Article in English | MEDLINE | ID: mdl-27771726

ABSTRACT

BACKGROUND/AIMS: Pneumonia is a significant risk factor for the development of venous thrombosis (VT). Cell-adhesion molecules (CAMs) are linked to the pathogenesis of both pneumonia and VT. We hypothesized that remote infection would confer a prothrombogenic milieu via systemic elevation of CAMs. METHODS: Lung injury was induced in wild-type (C57BL/6) mice by lung contusion or intratracheal inoculation with Klebsiella pneumoniae or saline controls. K. pneumoniae-treated mice and controls additionally underwent inferior vena cava (IVC) ligation to generate VT. RESULTS: Lung-contusion mice demonstrated no increase in E-selectin or P-selectin whereas mice infected with K. pneumoniae demonstrated increased circulating P-selectin, ICAM-1, VCAM-1 and thrombin-antithrombin (TAT) complexes. Mice with pneumonia formed VT 3 times larger than controls, demonstrated significantly more upregulation of vein-wall and systemic CAMs, and formed erythrocyte-rich thrombi. CONCLUSION: Elevated CAM expression was identified in mice with pneumonia, but not lung contusion, indicating that the type of inflammatory stimulus and the presence of infection drive the vein-wall response. Elevation of CAMs was associated with amplified VT and may represent an alternate mechanism by which to target the prevention of VT.


Subject(s)
Cell Adhesion Molecules/blood , Klebsiella Infections/complications , Klebsiella pneumoniae/pathogenicity , Pneumonia, Bacterial/complications , Vena Cava, Inferior/metabolism , Venous Thrombosis/etiology , Acute Lung Injury/blood , Acute Lung Injury/complications , Animals , Antithrombin III , Cell Adhesion Molecules/antagonists & inhibitors , Disease Models, Animal , Fibrinolytic Agents/pharmacology , Intercellular Adhesion Molecule-1/blood , Klebsiella Infections/blood , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Ligation , Male , Mice, Inbred C57BL , P-Selectin/blood , Peptide Hydrolases/blood , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Up-Regulation , Vascular Cell Adhesion Molecule-1/blood , Vena Cava, Inferior/surgery , Venous Thrombosis/blood , Venous Thrombosis/microbiology , Venous Thrombosis/prevention & control
18.
Vasc Med ; 20(2): 143-52, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25832602

ABSTRACT

Initial treatment for venous thromboembolism (VTE) includes the acute and intermediate phases, usually lasting for 3 months. The choice to extend therapy beyond the initial 3-month window involves assessing a combination of risk factors for VTE recurrence and bleeding, along with weighing patient preferences. In some cases, such as VTE provoked by a reversible surgical risk factor, the recurrence risk is sufficiently low that most patients should not receive extended therapy. In other cases, such as VTE associated with malignancy, the recurrence risk is sufficiently high that treatment should be extended beyond the initial 3 months. However, a large number of patients fall into a grey zone where the decision on extended therapy is less clear-cut. In this review, we summarize the evidence for VTE recurrence risk and the role for extended anticoagulation given a variety of patient-specific factors and laboratory results. We also review the role of VTE risk prediction tools and provide a recommended algorithm for approaching the decision of extended anticoagulation therapy. Various agents available for extended VTE therapy, including warfarin, aspirin and the direct oral anticoagulant agents, are discussed.


Subject(s)
Anticoagulants/therapeutic use , Hemorrhage/chemically induced , Venous Thromboembolism/diagnosis , Venous Thromboembolism/drug therapy , Warfarin/therapeutic use , Anticoagulants/administration & dosage , Humans , Neoplasms/complications , Recurrence , Risk Factors , Time Factors , Warfarin/administration & dosage
19.
Curr Atheroscler Rep ; 16(7): 425, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24838375

ABSTRACT

Extracellular nucleotides play a critical role in vascular thrombosis and inflammation. Alterations in purinergic extracellular nucleotide concentrations activate pathways that result in platelet degranulation and aggregation, and endothelial and leukocyte activation and recruitment. CD39, the dominant vascular nucleotidase, hydrolyzes ATP and ADP to provide the substrate for generation of the anti-inflammatory and antithrombotic mediator adenosine. The purinergic signaling system, with CD39 at its center, plays an important role in modulating vascular homeostasis and the response to vascular injury, as seen in clinically relevant diseases such as stroke, ischemia-reperfusion injury, and pulmonary hypertension. A growing body of knowledge of the purinergic signaling pathway implicates CD39 as a critical modulator of vascular thrombosis and inflammation. Therapeutic strategies targeting CD39 offer promising opportunities in the management of vascular thromboinflammatory diseases.


Subject(s)
Antigens, CD/immunology , Apyrase/immunology , Endothelium, Vascular/immunology , Thrombosis/immunology , Vasculitis/immunology , Antigens, CD/physiology , Apyrase/physiology , Atherosclerosis/immunology , Atherosclerosis/metabolism , Endothelium, Vascular/metabolism , Humans , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/metabolism , Inflammation/metabolism , Myocardial Ischemia/immunology , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/metabolism , Signal Transduction/immunology , Stroke/immunology , Stroke/metabolism , Thrombosis/metabolism , Vasculitis/metabolism
20.
FASEB J ; 27(11): 4419-28, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23901069

ABSTRACT

The ectoenzyme CD39 suppresses thrombosis and inflammation by suppressing ATP and ADP to AMP. However, mechanisms of CD39 transcriptional and post-translational regulation are not well known. Here we show that CD39 levels are modulated by inhibition of phosphodiesterase 3 (PDE3). RAW macrophages and human umbilical vein endothelial cells (HUVECs) were treated with the PDE3 inhibitors cilostazol and milrinone, then analyzed using qRT-PCR, immunoprecipitation/Western blot, immunofluorescent staining, radio-thin-layer chromatography, a malachite green assay, and ELISA. HUVECs expressed elevated CD39 protein (2-fold [P<0.05] for cilostazol and 2.5-fold [P<0.01] for milrinone), while macrophage CD39 mRNA and protein were both elevated after PDE3 inhibition. HUVEC ATPase activity increased by 25% with cilostazol and milrinone treatment (P<0.05 and P<0.01, respectively), as did ADPase activity (47% and 61%, P<0.001). There was also a dose-dependent elevation of soluble CD39 after treatment with 8-Br-cAMP, with maximal elevation of 60% more CD39 present compared to controls (1 mM, P<0.001). Protein harvested after 8-Br-cAMP treatment showed that ubiquitination of CD39 was decreased by 43% compared to controls. A DMSO or PBS vehicle control was included for each experiment based on solubility of cilostazol, milrinone, and 8-Br-cAMP. These results indicate that PDE3 inhibition regulates endothelial CD39 at a post-translational level.


Subject(s)
Antigens, CD/genetics , Apyrase/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Gene Expression Regulation, Enzymologic , Transcription, Genetic , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cilostazol , Cyclic Nucleotide Phosphodiesterases, Type 3/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Enzyme Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Macrophages/metabolism , Milrinone/pharmacology , Tetrazoles/pharmacology , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL