Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Eur J Nucl Med Mol Imaging ; 50(3): 652-660, 2023 02.
Article in English | MEDLINE | ID: mdl-36178535

ABSTRACT

PURPOSE: Total body positron emission tomography (TB-PET) has recently been introduced in nuclear medicine departments. There is a large interest in these systems, but for many centers, the high acquisition cost makes it very difficult to justify their current operational budget. Here, we propose medium-cost long axial FOV scanners as an alternative. METHODS: Several medium-cost long axial FOV designs are described with their advantages and drawbacks. We describe their potential for higher throughput, more cost-effective scanning, a larger group of indications, and novel research opportunities. The wider spread of TB-PET can also lead to the fast introduction of new tracers (at a low dose), new methodologies, and optimized workflows. CONCLUSIONS: A medium-cost TB-PET would be positioned between the current standard PET-CT and the full TB-PET systems in investment but recapitulate most advantages of full TB-PET. These systems could be more easily justified financially in a standard academic or large private nuclear medicine department and still have ample research options.


Subject(s)
Nuclear Medicine , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Nuclear Medicine/methods , Positron-Emission Tomography/methods
2.
J Nucl Cardiol ; 29(1): 251-261, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32557152

ABSTRACT

BACKGROUND: We aim to assess the spill-in effect and the benefit in quantitative accuracy for [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) using the background correction (BC) technique. METHODS: Seventy-two datasets of patients diagnosed with AAA were reconstructed with ordered subset expectation maximization algorithm incorporating point spread function (PSF). Spill-in effect was investigated for the entire aneurysm (AAA), and part of the aneurysm excluding the region close to the bone (AAAexc). Quantifications of PSF and PSF+BC images using different thresholds (% of max. SUV in target regions-of-interest) to derive target-to-background (TBR) values (TBRmax, TBR90, TBR70 and TBR50) were compared at 3 and 10 iterations. RESULTS: TBR differences were observed between AAA and AAAexc due to spill-in effect from the bone into the aneurysm. TBRmax showed the highest sensitivity to the spill-in effect while TBR50 showed the least. The spill-in effect was reduced at 10 iterations compared to 3 iterations, but at the expense of reduced contrast-to-noise ratio (CNR). TBR50 yielded the best trade-off between increased CNR and reduced spill-in effect. PSF+BC method reduced TBR sensitivity to spill-in effect, especially at 3 iterations, compared to PSF (P-value ≤ 0.05). CONCLUSION: TBR50 is robust metric for reduced spill-in and increased CNR.


Subject(s)
Aortic Aneurysm, Abdominal , Positron Emission Tomography Computed Tomography , Algorithms , Aortic Aneurysm, Abdominal/diagnostic imaging , Benchmarking , Fluorodeoxyglucose F18 , Humans , Image Processing, Computer-Assisted/methods , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography
3.
J Nucl Cardiol ; 29(4): 1660-1670, 2022 08.
Article in English | MEDLINE | ID: mdl-34046803

ABSTRACT

Non-invasive positron emission tomography (PET) of vascular inflammation and atherosclerotic plaque by identifying increased uptake of 18F-fluordeoxyglucose (18F-FDG) is a powerful tool for monitoring disease activity, progression, and its response to therapy. 18F-FDG PET/computed tomography (PET/CT) of the aorta and carotid arteries has become widely used to assess changes in inflammation in clinical trials. However, the recent advent of hybrid PET/magnetic resonance (PET/MR) scanners has advantages for vascular imaging due to the reduction in radiation exposure and improved soft tissue contrast of MR compared to CT. Important for research and clinical use is an understanding of the scan-rescan repeatability of the PET measurement. While this has been studied for PET/CT, no data is currently available for vascular PET/MR imaging. In this study, we determined the scan-rescan measurement repeatability of 18F-FDG PET/MR in the aorta and carotid arteries was less than 5%, comparable to similar findings for 18F-FDG PET/CT.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Inflammation/diagnostic imaging , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Tomography, X-Ray Computed/methods
4.
J Nucl Cardiol ; 28(5): 1875-1886, 2021 10.
Article in English | MEDLINE | ID: mdl-31721093

ABSTRACT

BACKGROUND: A confounding issue in [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) is the spill in contamination from the bone into the aneurysm. This study investigates and corrects for this spill in contamination using the background correction (BC) technique without the need to manually exclude the part of the AAA region close to the bone. METHODS: Seventy-two (72) datasets of patients with AAA were reconstructed with the standard ordered subset expectation maximization (OSEM) algorithm incorporating point spread function (PSF) modelling. The spill in effect in the aneurysm was investigated using two target regions of interest (ROIs): one covering the entire aneurysm (AAA), and the other covering the aneurysm but excluding the part close to the bone (AAAexc). ROI analysis was performed by comparing the maximum SUV in the target ROI (SUVmax(T)), the corrected cSUVmax (SUVmax(T) - SUVmean(B)) and the target-to-blood ratio (TBR = SUVmax(T)/SUVmean(B)) with respect to the mean SUV in the right atrium region. RESULTS: There is a statistically significant higher [18F]-NaF uptake in the aneurysm than normal aorta and this is not correlated with the aneurysm size. There is also a significant difference in aneurysm uptake for OSEM and OSEM + PSF (but not OSEM + PSF + BC) when quantifying with AAA and AAAexc due to the spill in from the bone. This spill in effect depends on proximity of the aneurysms to the bone as close aneurysms suffer more from spill in than farther ones. CONCLUSION: The background correction (OSEM + PSF + BC) technique provided more robust AAA quantitative assessments regardless of the AAA ROI delineation method, and thus it can be considered as an effective spill in correction method for [18F]-NaF AAA studies.


Subject(s)
Algorithms , Aortic Aneurysm, Abdominal/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/pharmacokinetics , Aged , Aortic Aneurysm, Abdominal/metabolism , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results , Sodium Fluoride/pharmacokinetics
5.
J Nucl Cardiol ; 28(5): 2194-2204, 2021 10.
Article in English | MEDLINE | ID: mdl-31898004

ABSTRACT

BACKGROUND: Hybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR. METHODS AND RESULTS: In a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts. CONCLUSION: Optimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.


Subject(s)
Heart/diagnostic imaging , Magnetic Resonance Angiography/standards , Positron Emission Tomography Computed Tomography/standards , Aged , Cohort Studies , Female , Fluorodeoxyglucose F18/administration & dosage , Fluorodeoxyglucose F18/therapeutic use , Heart/physiopathology , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Angiography/statistics & numerical data , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/statistics & numerical data , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/therapeutic use
6.
J Nucl Cardiol ; 27(4): 1126-1141, 2020 08.
Article in English | MEDLINE | ID: mdl-31667675

ABSTRACT

BACKGROUND: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging. METHODS: We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). RESULTS: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. CONCLUSIONS: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.


Subject(s)
Carotid Artery Diseases/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , Adult , Animals , Bone and Bones/diagnostic imaging , Female , Humans , Male , Middle Aged , Rabbits , Sodium Fluoride
7.
Eur J Nucl Med Mol Imaging ; 46(2): 501-518, 2019 02.
Article in English | MEDLINE | ID: mdl-30269154

ABSTRACT

PURPOSE: In this article, we discuss dynamic whole-body (DWB) positron emission tomography (PET) as an imaging tool with significant clinical potential, in relation to conventional standard uptake value (SUV) imaging. BACKGROUND: DWB PET involves dynamic data acquisition over an extended axial range, capturing tracer kinetic information that is not available with conventional static acquisition protocols. The method can be performed within reasonable clinical imaging times, and enables generation of multiple types of PET images with complementary information in a single imaging session. Importantly, DWB PET can be used to produce multi-parametric images of (i) Patlak slope (influx rate) and (ii) intercept (referred to sometimes as "distribution volume"), while also providing (iii) a conventional 'SUV-equivalent' image for certain protocols. RESULTS: We provide an overview of ongoing efforts (primarily focused on FDG PET) and discuss potential clinically relevant applications. CONCLUSION: Overall, the framework of DWB imaging [applicable to both PET/CT(computed tomography) and PET/MRI (magnetic resonance imaging)] generates quantitative measures that may add significant value to conventional SUV image-derived measures, with limited pitfalls as we also discuss in this work.


Subject(s)
Positron-Emission Tomography/methods , Whole Body Imaging/methods , Humans , Image Processing, Computer-Assisted , Signal-To-Noise Ratio
8.
Eur Radiol ; 29(9): 4812-4821, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30689031

ABSTRACT

PURPOSE: Single-pass whole-body (WB) 18F-FDG PET/CT imaging is routinely employed for the clinical assessment of malignant, infectious, and inflammatory diseases. Our aim in this study is the systematic clinical assessment of lesion detectability in multi-pass WB parametric imaging enabling direct imaging of the highly quantitative 18F-FDG influx rate constant Ki, as a complement to standard-of-care standardized uptake value (SUV) imaging for a range of oncologic studies. METHODS: We compared SUV and Ki images of 18 clinical studies of different oncologic indications (lesion characterization and staging) including standard-of-care SUV and dynamic WB PET protocols in a single session. The comparison involved both the visual assessment and the quantitative evaluation of SUVmean, SUVmax, Kimean, Kimax, tumor-to-background ratio (TBRSUV, TBRKi), and contrast-to-noise ratio (CNRSUV, CNRKi) quality metrics. RESULTS: Overall, both methods provided good-quality images suitable for visual interpretation. A total of 118 lesions were detected, including 40 malignant (proven) and 78 malignant (unproven) lesions. Of those, 111 were detected on SUV and 108 on Ki images. One proven malignant lesion was detected only on Ki images whereas none of the proven malignant lesions was visible only on SUV images. The proven malignant lesions had overall higher Ki TBR and CNR scores. One unproven lesion, which was later confirmed as benign, was detected only on the SUV images (false-positive). Overall, our results from 40 proven malignant lesions suggested improved sensitivity (from 92.5 to 95%) and accuracy (from 90.24 to 95.12%) and potentially enhanced specificity with Ki over SUV imaging. CONCLUSION: Oncologic WB Patlak Ki imaging may achieve equivalent or superior lesion detectability with reduced false-positive rates when complementing standard-of-care SUV imaging. KEY POINTS: • The whole-body spatio-temporal distribution of 18 F-FDG uptake may reveal clinically useful information on oncologic diseases to complement the standard-of-care SUV metric. • Parametric imaging resulted in less false-positive indications of non-specific 18 F-FDG uptake relative to SUV. • Parametric imaging may achieve equivalent or superior 18 F-FDG lesion detectability than standard-of-care SUV imaging in oncology.


Subject(s)
Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Whole Body Imaging/methods , Adult , Aged , Female , Fluorodeoxyglucose F18 , Humans , Linear Models , Male , Middle Aged , Pilot Projects , Prospective Studies , Radiopharmaceuticals , Sensitivity and Specificity
9.
J Digit Imaging ; 32(6): 1071-1080, 2019 12.
Article in English | MEDLINE | ID: mdl-31388864

ABSTRACT

Extensive research is currently being conducted into dynamic positron emission tomography (PET) acquisitions (including dynamic whole-body imaging) as well as extraction of radiomic features from imaging modalities. We describe a new PET viewing software known as Imager-4D that provides a facile means of viewing and analyzing dynamic PET data and obtaining associated quantitative metrics including radiomic parameters. The Imager-4D was programmed in the Java language utilizing the FX extensions. It is executable on any system for which a Java w/FX compliant virtual machine is available. The software incorporates the ability to view and analyze dynamic data acquired with different types of dynamic protocols. For image display, the program maintains a built-in library of 62 different lookup tables with monochromatic and full-color distributions. The Imager-4D provides multiple display layouts and can display fused images. Multiple methods of volume-of-interest (VOI) selection are available. Dynamic analysis features, such as image summation and full Patlak analysis, are also available. The user interface includes window width and level, blending, and zoom functionality. VOI sizes are adjustable and data from VOIs can either be displayed numerically or graphically within the software or exported. An example case of a 50-year-old woman with metastatic colorectal cancer and thyroiditis is included and demonstrates the steps for a user to obtain standard PET parameters, dynamic data, and radiomic features using selected VOIs. The Imager-4D represents a novel PET viewer that allows the user to view dynamic PET data, to derive dynamic and radiomic parameters from that data, and to combine dynamic data with radiomics ("dynomics"). The Imager-4D is available as a free download. This software has the potential to speed the adoption of advanced analysis of dynamic PET data into routine clinical use.


Subject(s)
Colorectal Neoplasms/pathology , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Positron-Emission Tomography/methods , Thyroiditis/complications , Colorectal Neoplasms/complications , Female , Humans , Imaging, Three-Dimensional , Liver/diagnostic imaging , Liver Neoplasms/complications , Middle Aged , Software
10.
Sleep Breath ; 22(4): 1125-1135, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29508121

ABSTRACT

PURPOSE: Evidence suggests that the inflammatory state of an atherosclerotic plaque is important in predicting future risk of plaque rupture. This study aims to investigate the feasibility of measuring plaque inflammation in patients with obstructive sleep apnea (OSA) utilizing advanced vascular imaging - hybrid positron-emission tomography/magnetic resonance imaging (PET/MRI) with fluorodeoxyglucose (FDG) tracer-before and after continuous positive airway pressure (CPAP). METHODS: Patients with newly diagnosed moderate to severe OSA underwent baseline PET/MRI for assessment of vascular inflammation of the carotid arteries and thoracic aorta prior to initiation of CPAP. Those adherent to CPAP returned for repeat imaging after 3-6 months of CPAP use. Atherosclerotic plaque activity, as measured by arterial wall FDG uptake, was calculated using target-to-background ratios (TBR) before and after CPAP. RESULTS: Five patients were recruited as part of a focused project. Mean age was 52 years (80% male), and mean apnea-hypopnea index (AHI) was 33. Three patients were objectively adherent with CPAP. In the pre-CPAP phase, all patients had focal FDG uptake in the carotid arteries and aorta. After CPAP, there was an average reduction in TBR of 5.5% (TBRmean) and 6.2% (TBRmax) in carotid and aortic plaque inflammation, similar in magnitude to the reduction observed with statin therapy alone in non-OSA patients (previously reported by others). CONCLUSIONS: We demonstrate the feasibility of using hybrid PET/MRI to assess atherosclerotic plaque inflammation in patients with OSA before and after CPAP. Use of the vascular PET/MRI platform in patients with OSA may provide better insight into the role of OSA and its treatment in reducing atherosclerotic inflammation.


Subject(s)
Continuous Positive Airway Pressure/methods , Coronary Vessels/physiopathology , Plaque, Atherosclerotic/diagnostic imaging , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/therapy , Feasibility Studies , Female , Humans , Male , Multimodal Imaging , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/therapy , Positron-Emission Tomography , Severity of Illness Index , Sleep Apnea, Obstructive/complications , Treatment Outcome
11.
Med Phys ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39341228

ABSTRACT

PURPOSE: This simulation study investigated the feasibility of generating Patlak Ki images using a dual time point (DTP-Ki) scan protocol involving two 3-min/bed routine static PET scans and, subsequently, assessed DTP-Ki performance for an optimal DTP scan time frame combination, against conventional Patlak Ki estimated from complete 0-93 min dynamic PET data. METHODS: Six realistic heterogeneous tumors of different characteristic spatiotemporal [18F]FDG uptake distributions for three noise levels commonly found in clinical studies and 20 noise realizations (N = 360 samples) were produced by analytic simulations of the XCAT phantom. Subsequently, DTP-Ki images were generated by performing standard linear indirect Patlak analysis with t* ≥ 12 $ \ge 12$ -min (Patlakt* = 12) using a scaled population-based input function (sPBIF) model on 66 combinations of early and late 3-min/bed static whole-body PET reconstructed images. All DTP-Ki images were evaluated against respective DTP-Ki images estimated with Patlakt* = 12 and 0-93 min individual input functions (iIFs) and against gold standard Ki images estimated with Patlakt* = 12, 0-93 min iIFs and tissue time activity curves from all reconstructed WB passes 12-93 min post injection. The optimal combination of early and late frames, in terms of attaining the highest correlation between DTP-Ki with sPBIF and gold standard Ki was also determined from a set of 66 different combinations of 2-min early and late frames. Moreover, the performance of DTP-Ki with sPBIF was compared against that of the retention index (RI) in terms of their correlation to the gold standard Ki. Finally, the feasibility and practicality of DTP protocol in the clinic were assessed through the analysis of nine patients. RESULTS: High correlations (>0.9) were observed between DTP-Ki values from sPBIF and those from iIFs for all evaluated DTP protocols while the mean AUC difference between sPBIF and iIFs was less than 10%. The percentage difference of mean values between DTP-Ki from sPBIF and from iIFs was less than 1%. DTP Ki from sPBIF exhibited significantly higher correlation with gold standard Ki, in contrast to RI, across all 66 DTP protocols (p < 0.05 using the two-tailed t-test by Williams) with the highest correlation attained for the 50-53-min early + 90-93-min late scan time frames (optimal DTP protocol). CONCLUSION: Feasibility of generating Patlak Ki [18F] FDG images from an early and a late post injection 3-min/bed routine static scan using a population-based input function model was demonstrated and an optimal DTP scan protocol was determined. The results indicated high correlations between DTP-Ki and gold-standard Ki images that are significantly larger than those between RI and gold-standard Ki.

12.
JAMA Netw Open ; 7(8): e2426141, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39106064

ABSTRACT

Importance: The chronic neuronal burden of traumatic brain injury (TBI) is not fully characterized by routine imaging, limiting understanding of the role of neuronal substrates in adverse outcomes. Objective: To determine whether tissues that appear healthy on routine imaging can be investigated for selective neuronal loss using [11C]flumazenil (FMZ) positron emission tomography (PET) and to examine whether this neuronal loss is associated with long-term outcomes. Design, Setting, and Participants: In this cross-sectional study, data were collected prospectively from 2 centers (University of Cambridge in the UK and Weill Cornell Medicine in the US) between September 1, 2004, and May 31, 2021. Patients with TBI (>6 months postinjury) were compared with healthy control participants (all aged >18 years). Individuals with neurological disease, benzodiazepine use, or contraindication to magnetic resonance imaging were excluded. Data were retrospectively collated with nonconsecutive recruitment, owing to convenience and scanner or PET ligand availability. Data were analyzed between February 1 and September 30, 2023. Exposure: Flumazenil voxelwise binding potential relative to nondisplaceable binding potential (BPND). Main Outcomes and Measures: Selective neuronal loss identified with FMZ PET was compared between groups on voxelwise and regional scales, and its association with functional, cognitive, and psychological outcomes was examined using Glasgow Outcome Scale (GOS) scores, measures of sustained executive attention (animal and sustained fluency), and 36-Item Short Form Health Survey (SF-36) scores. Diffusion tensor imaging was used to assess structural connectivity of regions of cortical damage, and its association with thalamic selective neuronal loss. Results: In this study, 24 patients with chronic TBI (mean [SD] age, 39.2 [12.3] years; 18 men [75.0%]) and 33 healthy control participants (mean [SD] age, 47.6 [20.5] years; 23 men [69.7%]) underwent FMZ PET. Patients with TBI had a median time of 29 (range, 7-95) months from injury to scan. They displayed selective neuronal loss in thalamic nuclei, over and above gross volume loss in the left thalamus, and bilateral central, mediodorsal, ventral-lateral dorsal, anterior, and ventral anterior thalamic nuclei, across a wide range of injury severities. Neuronal loss was associated with worse functional outcome using GOS scores (left thalamus, left ventral anterior, and bilateral central, mediodorsal, and anterior nuclei), worse cognitive outcome on measures of sustained executive attention (left thalamus, bilateral central, and right mediodorsal nuclei), and worse emotional outcome using SF-36 scores (right central thalamic nucleus). Chronic thalamic neuronal loss partially mirrored the location of primary cortical contusions, which may indicate secondary injury mechanisms of transneuronal degeneration. Conclusions and Relevance: The findings of this study suggest that selective thalamic vulnerability may have chronic neuronal consequences with relevance to long-term outcome, suggesting the evolving and potentially lifelong thalamic neuronal consequences of TBI. FMZ PET is a more sensitive marker of the burden of neuronal injury than routine imaging; therefore, it could inform outcome prognostication and may lead to the development of individualized precision medicine approaches.


Subject(s)
Brain Injuries, Traumatic , Positron-Emission Tomography , Thalamus , Humans , Male , Female , Adult , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Cross-Sectional Studies , Middle Aged , Positron-Emission Tomography/methods , Thalamus/diagnostic imaging , Thalamus/pathology , Flumazenil/analogs & derivatives , Neurons/pathology
13.
Neuro Oncol ; 26(8): 1526-1535, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38553990

ABSTRACT

BACKGROUND: Our purpose was to determine the utility of [68Ga]-DOTATATE PET/MRI in meningioma response assessment following radiosurgery. METHODS: Patients with meningioma prospectively underwent postoperative DOTATATE PET/MRI. Co-registered PET and gadolinium-enhanced T1-weighted MRI were employed for radiosurgery planning. Follow-up DOTATATE PET/MRI was performed at 6-12 months post-radiosurgery. Maximum absolute standardized uptake value (SUV) and SUV ratio (SUVRSSS) referencing superior sagittal sinus (SSS) blood pool were obtained. Size change was determined by Response Assessment in Neuro-Oncology (RANO) criteria. Association of SUVRSSS change magnitude and progression-free survival (PFS) was evaluated using Cox regression. RESULTS: Twenty-seven patients with 64 tumors (26% World Health Organization [WHO]-1, 41% WHO-2, 26% WHO-3, and 7% WHO-unknown) were prospectively followed post stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT; mean dose: 30 Gy, modal dose 35 Gy, mean of 5 fractions). Post-irradiation SUV and SUVRSSS decreased by 37.4% and 44.4%, respectively (P < .0001). Size product decreased by 8.9%, thus failing to reach the 25% significance threshold as determined by RANO guidelines. Mean follow-up time was 26 months (range: 6-44). Overall mean PFS was 83% and 100%/100%/54% in WHO-1/-2/-3 subcohorts, respectively, at 34 months. At maximum follow-up (42-44 months), PFS was 100%/83%/54% in WHO-1/-2/-3 subcohorts, respectively. Cox regression analyses revealed a hazard ratio of 0.48 for 10-unit reduction in SUVRSSS in the SRS cohort. CONCLUSIONS: DOTATATE PET SUV and SUVRSSS demonstrated marked, significant decrease post-radiosurgery. Lesion size decrease was statistically significant; however, it was not clinically significant by RANO criteria. DOTATATE PET/MR thus represents a promising imaging biomarker for response assessment in meningiomas treated with radiosurgery. CLINICALTRIALS.GOV IDENTIFIER: NCT04081701.


Subject(s)
Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Organometallic Compounds , Positron-Emission Tomography , Radiosurgery , Humans , Meningioma/diagnostic imaging , Meningioma/surgery , Meningioma/pathology , Meningioma/radiotherapy , Radiosurgery/methods , Female , Male , Middle Aged , Aged , Meningeal Neoplasms/surgery , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/radiotherapy , Positron-Emission Tomography/methods , Adult , Magnetic Resonance Imaging/methods , Prospective Studies , Follow-Up Studies , Aged, 80 and over , Prognosis , Radiotherapy Planning, Computer-Assisted/methods , Radiopharmaceuticals , Multimodal Imaging/methods
14.
AJNR Am J Neuroradiol ; 45(6): 773-780, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38604734

ABSTRACT

BACKGROUND AND PURPOSE: WHO grade 3 meningiomas are rare and poorly understood and have a higher propensity for recurrence, metastasis, and worsened clinical outcomes compared with lower-grade meningiomas. The purpose of our study was to prospectively evaluate the molecular profile, PET characteristics, and outcomes of patients with World Health Organization grade 3 meningiomas who were imaged with gallium 68 (68Ga) DOTATATE PET/MR imaging. MATERIALS AND METHODS: Patients with World Health Organization grade 3 meningiomas enrolled in our prospective observational cohort evaluating the utility of (68Ga) DOTATATE PET/MR imaging in somatostatin receptor positive brain tumors were included. We stratified patients by de novo-versus-secondary-progressive status and evaluated the differences in the PET standard uptake value, molecular profiles, and clinical outcomes. RESULTS: Patients met the inclusion criteria (secondary-progressive: 7/14; de novo: 7/14). The secondary-progressive cohort had a significantly higher per-patient number of surgeries (4.1 versus 1.6; P = .011) and trended toward a higher number of radiation therapy courses (2.4 versus 1.6; P = .23) and cumulative radiation therapy doses (106Gy versus 68.3Gy; P = .31). The secondary-progressive cohort had a significantly lower progression-free survival compared with the de novo cohort (4.8 versus 37.7 months; P = .004). Secondary-progressive tumors had distinct molecular pathology profiles with higher numbers of mutations (3.5 versus 1.2; P = .024). Secondary-progressive tumors demonstrated higher PET standard uptake values (17.1 versus 12.4; P = .0021). CONCLUSIONS: Our study confirms prior work illustrating distinct clinical outcomes in secondary-progressive and de novo World Health Organization grade 3 meningiomas. Furthermore, our findings support (68Ga) DOTATATE PET/MR imaging as a useful management strategy in World Health Organization grade 3 meningiomas and provide insight into meningioma biology, as well as clinical management implications.


Subject(s)
Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Multimodal Imaging , Organometallic Compounds , Positron-Emission Tomography , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Female , Male , Middle Aged , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Aged , Multimodal Imaging/methods , Prospective Studies , Disease Progression , Neoplasm Grading , Adult , World Health Organization , Radiopharmaceuticals
15.
JACC Cardiovasc Imaging ; 17(4): 411-424, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38300202

ABSTRACT

BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.


Subject(s)
Cardiomyopathies , Myocarditis , Sarcoidosis , Humans , Fluorodeoxyglucose F18 , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/therapy , Cardiomyopathies/complications , Contrast Media , Radiopharmaceuticals , Predictive Value of Tests , Gadolinium , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Myocarditis/complications , Magnetic Resonance Spectroscopy , Sarcoidosis/diagnostic imaging , Sarcoidosis/therapy , Sarcoidosis/complications
16.
Fluids Barriers CNS ; 21(1): 30, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566110

ABSTRACT

BACKGROUND: Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS: 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aß+) and 16 Aß- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS: LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aß+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION: The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Humans , Turbinates/metabolism , Turbinates/pathology , Butanols/metabolism , Neurodegenerative Diseases/metabolism , Thiazoles/metabolism , Positron-Emission Tomography/methods , Alzheimer Disease/metabolism , Aging , Brain/metabolism , 1-Butanol/metabolism , Amyloid beta-Peptides/metabolism , Mammals/metabolism
17.
Phys Med Biol ; 67(10)2022 05 12.
Article in English | MEDLINE | ID: mdl-35472757

ABSTRACT

Objective.Using Monte-Carlo simulations, we evaluated the physical performance of a hypothetical state-of-the-art clinical PET scanner with adaptive axial field-of-view (AFOV) based on the validated GATE model of the Siemens Biograph VisionTMPET/CT scanner.Approach.Vision consists of 16 compact PET rings, each consisting of 152 mini-blocks of 5 × 5 Lutetium Oxyorthosilicate crystals (3.2 × 3.2 × 20 mm3). The Vision 25.6 cm AFOV was extended by adopting (i) a sparse mini-block ring (SBR) configuration of 49.6 cm AFOV, with all mini-block rings interleaved with 16 mm axial gaps, or (ii) a sparse mini-block checkerboard (SCB) configuration of 51.2 cm AFOV, with all mini-blocks interleaved with gaps of 16 mm (transaxial) × 16 mm (axial) width in checkerboard pattern. For sparse configurations, a 'limited' continuous bed motion (limited-CBM) acquisition was employed to extend AFOVs by 2.9 cm. Spatial resolution, sensitivity, image quality (IQ), NECR and scatter fraction were assessed per NEMA NU2-2012.Main Results.All IQ phantom spheres were distinguishable with all configurations. SBR and SCB percent contrast recovery (% CR) and background variability (% BV) were similar (p-value > 0.05). Compared to Vision, SBR and SCB %CRs were similar (p-values > 0.05). However, SBR and SCB %BVs were deteriorated by 30% and 26% respectively (p-values < 0.05). SBR, SCB and Vision exhibited system sensitivities of 16.6, 16.8, and 15.8 kcps MBq-1, NECRs of 311 kcps @35 kBq cc-1, 266 kcps @25.8 kBq cc-1, and 260 kcps @27.8 kBq cc-1, and scatter fractions of 31.2%, 32.4%, and 32.6%, respectively. SBR and SCB exhibited a smoother sensitivity reduction and noise enhancement rate from AFOV center to its edges. SBR and SCB attained comparable spatial resolution in all directions (p-value > 0.05), yet, up to 1.5 mm worse than Vision (p-values < 0.05).Significance.The proposed sparse configurations may offer a clinically adoptable solution for cost-effective adaptive AFOV PET with either highly-sensitive or long-AFOV acquisitions.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Monte Carlo Method , Phantoms, Imaging , Physical Functional Performance , Positron-Emission Tomography/methods
18.
Radiol Imaging Cancer ; 4(2): e210067, 2022 03.
Article in English | MEDLINE | ID: mdl-35275019

ABSTRACT

Purpose To evaluate dynamic gallium 68 (68Ga) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) brain PET/MRI as an adjunct modality in meningioma, enabling multiparametric standardized uptake value (SUV) and Patlak net binding rate constant (Ki) imaging, and to optimize static acquisition period. Materials and Methods In this prospective study (ClinicalTrials.gov no. NCT04081701, DOMINO-START), 68Ga-DOTATATE PET/MRI-derived time-activity curves (TACs) were measured in 84 volumes of interest in 19 participants (mean age, 63 years; range, 36-89 years; 13 women; 2019-2021) with meningiomas. Region- and voxel-specific Ki were determined using Patlak analysis with a validated population-based reference tissue TAC model built from an independent data set of nine participants. Mean and maximum absolute and relative-to-superior-sagittal-sinus SUVs were extracted from the entire 50 minutes (SUV50) and last 10 minutes (SUV10) of acquisition. SUV versus Ki Spearman correlation, SUV and Ki meningioma versus posttreatment-change Mann-Whitney U tests, and SUV50 versus SUV10 Wilcoxon matched-pairs signed rank tests were performed. Results Absolute and relative maximum SUV50 demonstrated a strong positive correlation with Patlak Ki in meningioma (r = 0.82, P < .001 and r = 0.85, P < .001, respectively) and posttreatment-change lesions (r = 0.88, P = .007 and r = 0.83, P = .02, respectively). Patlak Ki images yielded higher lesion contrast by mitigating nonspecific background signal. All SUV50 and SUV10 metrics differed between meningioma and posttreatment-change regions (P < .001). Within the meningioma group, SUV10 attained higher mean scores than SUV50 (P < .001). Conclusion Combined SUV and Patlak Ki68Ga-DOTATATE PET/MRI enabled multiparametric evaluation of meningioma, offering the potential to enhance lesion contrast with Ki imaging and optimize the SUV measurement postinjection window. Keywords: Molecular Imaging-Clinical Translation, Neuro-Oncology, PET/MRI, Dynamic, Patlak ClinicalTrials.gov registration no. NCT04081701 © RSNA, 2022.


Subject(s)
Meningeal Neoplasms , Meningioma , Female , Gallium Radioisotopes , Humans , Magnetic Resonance Imaging/methods , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/therapy , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/therapy , Middle Aged , Positron-Emission Tomography/methods , Prospective Studies , Radionuclide Imaging
19.
Sci Rep ; 12(1): 9256, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661809

ABSTRACT

Multiple approaches with [68Ga]-DOTATATE, a somatostatin analog PET radiotracer, have demonstrated clinical utility in evaluation of meningioma but have not been compared directly. Our purpose was to compare diagnostic performance of different approaches to quantitative brain [68Ga]-DOTATATE PET/MRI analysis in patients with suspected meningioma recurrence and to establish the optimal diagnostic threshold for each method. Patients with suspected meningioma were imaged prospectively with [68Ga]-DOTATATE brain PET/MRI. Lesions were classified as meningiomas and post-treatment change (PTC), using follow-up pathology and MRI as reference standard. Lesions were reclassified using the following methods: absolute maximum SUV threshold (SUV), SUV ratio (SUVR) to superior sagittal sinus (SSS) (SUVRsss), SUVR to the pituitary gland (SUVRpit), and SUVR to the normal brain parenchyma (SUVRnorm). Diagnostic performance of the four methods was compared using contingency tables and McNemar's test. Previously published pre-determined thresholds were assessed where applicable. The optimal thresholds for each method were identified using Youden's J statistics. 166 meningiomas and 41 PTC lesions were identified across 62 patients. SUV, SUVRsss, SUVRpit, and SUVRnorm of meningioma were significantly higher than those of PTC (P < 0.0001). The optimal thresholds for SUV, SUVRsss, SUVRpit, and SUVRnorm were 4.7, 3.2, 0.3, and 62.6, respectively. At the optimal thresholds, SUV had the highest specificity (97.6%) and SUVRsss had the highest sensitivity (86.1%). An ROC analysis of SUV, SUVRsss, SUVRpit, and SUVRnorm revealed AUC of 0.932, 0.910, 0.915, and 0.800, respectively (P < 0.0001). Developing a diagnostic threshold is key to wider clinical translation of [68Ga]-DOTATATE PET/MRI in meningioma evaluation. We found that the SUVRsss method may have the most robust combination of sensitivity and specificity in the diagnosis of meningioma in the post-treatment setting, with the optimal threshold of 3.2. Future studies validating our findings in different patient populations are needed to continue optimizing the diagnostic performance of [68Ga]-DOTATATE PET/MRI in meningioma patients.Trial registration: ClinicalTrials.gov Identifier: NCT04081701. Registered 9 September 2019. https://clinicaltrials.gov/ct2/show/NCT04081701 .


Subject(s)
Meningeal Neoplasms , Meningioma , Organometallic Compounds , Gallium Radioisotopes , Humans , Magnetic Resonance Imaging/methods , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/drug therapy , Meningioma/diagnostic imaging , Organometallic Compounds/therapeutic use , Positron-Emission Tomography/methods , Radionuclide Imaging , Radiopharmaceuticals
20.
Front Nucl Med ; 2: 941848, 2022.
Article in English | MEDLINE | ID: mdl-39390995

ABSTRACT

Rational: To validate a population-based input function (PBIF) model that alleviates the need for scanning since injection time in dynamic whole-body (WBdyn) PET. Methods: Thirty-seven patients with suspected/known well-differentiated neuroendocrine tumors were included (GAPETNET trial NTC03576040). All WBdyn 68Ga-DOTATOC-PET/CT acquisitions were performed on a digital PET system (one heart-centered 6 min-step followed by nine WB-passes). The PBIF model was built from 20 image-derived input functions (IDIFs) obtained from a respective number of patients' WBdyn exams using an automated left-ventricle segmentation tool. All IDIF peaks were aligned to the median time-to-peak, normalized to patient weight and administrated activity, and then fitted to an exponential model function. PBIF was then applied to 17 independent patient studies by scaling it to match the respective IDIF section at 20-55 min post-injection time windows corresponding to WB-passes 3-7. The ratio of area under the curves (AUCs) of IDIFs and PBIF3-7 were compared using a Bland-Altman analysis (mean bias ± SD). The Patlak-estimated mean Ki for physiological uptake (Ki-liver and Ki-spleen) and tumor lesions (Ki-tumor) using either IDIF or PBIF were also compared. Results: The mean AUC ratio (PBIF/IDIF) was 0.98 ± 0.06. The mean Ki bias between PBIF3-7 and IDIF was -2.6 ± 6.2% (confidence interval, CI: -5.8; 0.6). For Ki-spleen and Ki-tumor, low relative bias with low SD were found [4.65 ± 7.59% (CI: 0.26; 9.03) and 3.70 ± 8.29% (CI: -1.09; 8.49) respectively]. For Ki-liver analysis, relative bias and SD were slightly higher [7.43 ± 13.13% (CI: -0.15; 15.01)]. Conclusion: Our study showed that the PBIF approach allows for reduction in WBdyn DOTATOC-PET/CT acquisition times with a minimum gain of 20 min.

SELECTION OF CITATIONS
SEARCH DETAIL