Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
FASEB J ; 38(3): e23466, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318780

ABSTRACT

Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.


Subject(s)
Fatty Liver , Metabolic Diseases , Humans , Animals , Mice , Mice, Inbred C57BL , Antioxidants , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidative Stress , Models, Animal
2.
Eur J Clin Invest ; 52(3): e13622, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34050922

ABSTRACT

According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.


Subject(s)
Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress , Humans
3.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202179

ABSTRACT

The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL. Up to the 20th week, an early mitochondrial remodeling with increased OXPHOS subunits levels and higher mitochondrial respiration occurred. Interestingly, a progressive loss of mitochondrial respiration along "Western diet" feeding was identified, accompanied by higher susceptibility to mitochondrial permeability transition pore opening. Importantly, our findings prove that mitochondrial alterations and subsequent impairment are independent of an excessive mitochondrial reactive oxygen species (ROS) generation, which was found to be progressively diminished along with disease progression. Instead, increased peroxisomal abundance and peroxisomal fatty acid oxidation-related pathway suggest that peroxisomes may contribute to hepatic ROS generation and oxidative damage, which may accelerate hepatic injury and disease progression. We show here for the first time the sequential events of mitochondrial alterations involved in non-alcoholic fatty liver disease (NAFLD) progression and demonstrate that mitochondrial ROS are not one of the first hits that cause NAFLD progression.


Subject(s)
Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Autophagy , Cholesterol Esters/metabolism , Computational Biology/methods , Disease Susceptibility , Fibrosis , Hepatocytes/metabolism , Lipid Metabolism , Liver/metabolism , Male , Mice , Mitochondria/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction , Oxidative Stress , Triglycerides/metabolism
4.
J Neurooncol ; 138(2): 231-240, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29427151

ABSTRACT

Medulloblastoma, the most common malignant pediatric brain tumor, is a heterogeneous disease, with the existence of at least four molecular types: Wingless (WNT), Sonic Hedgehog (SHH), Group 3 and Group 4 tumors. The latter two groups, which can be identified by an application of multi-gene expression or methylation profiling, show sometimes ambiguous categorization and are still classified for diagnostic reason as non-SHH/non-WNT medulloblastomas in updated WHO 2016 classification. In order to better characterize non-SHH/non-WNT tumors, we applied the method based on the Nanostring nCounter Technology, using the 26 genes codeset in 68 uniformly treated medulloblastoma patients. This allowed for identification of tumors, which shared common Group 3 and Group 4 gene signatures. We recognized three transcriptional groups within non-WNT/non-SHH tumors: Group 3, Group 4 and the Intermediate 3/4 Group. Group 3, in line with previously published results, showed poor prognosis with survival rate < 40%, frequent metastases, large cell/anaplastic pathology and presence of tumors with MYCC amplification. This is in contrast to patients from the Intermediate 3/4 Group who showed the best survival rate (100%). Overall and progression free survival were better for this group than for Group 3 (p = 0.001, for both) and Group 4 (p = 0.064 and p = 0.066, respectively). Our work supports the view that within the non-WNT/non-SHH tumors different risk groups exist and that the current two groups classifier may be not sufficient for proper clinical categorization of individual patients.


Subject(s)
Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/metabolism , Medulloblastoma/diagnosis , Medulloblastoma/metabolism , Adolescent , Algorithms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/mortality , Child , Child, Preschool , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Infant , Male , Medulloblastoma/classification , Medulloblastoma/mortality , Prognosis , RNA/metabolism , Survival Analysis
5.
J Transl Med ; 14(1): 174, 2016 06 12.
Article in English | MEDLINE | ID: mdl-27290639

ABSTRACT

BACKGROUND: Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD). METHODS: We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. RESULTS: Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification. CONCLUSIONS: We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale.


Subject(s)
Exome/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Pediatrics , Sequence Analysis, DNA/methods , Biopsy , Child , Child, Preschool , DNA, Mitochondrial/genetics , Female , Humans , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/genetics , Muscles/pathology , Mutation/genetics , Pedigree
6.
Eur J Clin Invest ; 45 Suppl 1: 25-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25524583

ABSTRACT

The adaptor protein p66Shc links membrane receptors to intracellular signalling pathways and has the potential to respond to energy status changes and regulate mitogenic signalling. Initially reported to mediate growth signals in normal and cancer cells, p66Shc has also been recognized as a pro-apoptotic protein involved in the cellular response to oxidative stress. Moreover, it is a key element in processes such as cancer cell proliferation, tumor progression, metastasis and metabolic reprogramming. Recent findings on the role of p66Shc in the above-mentioned processes have been obtained through the use of various tumor cell types, including prostate, breast, ovarian, lung, colon, skin and thyroid cancer cells. Interestingly, the impact of p66Shc on the proliferation rate was mainly observed in prostate tumors, while its impact on metastasis was mainly found in breast cancers. In this review, we summarize the current knowledge about the possible roles of p66Shc in different cancers.


Subject(s)
Apoptosis/physiology , Neoplasms/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Shc Signaling Adaptor Proteins/metabolism , Cell Proliferation/physiology , Humans , Shc Signaling Adaptor Proteins/physiology , Signal Transduction , Src Homology 2 Domain-Containing, Transforming Protein 1
7.
J Inherit Metab Dis ; 36(6): 929-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23361305

ABSTRACT

Barth syndrome (BTHS) is an X-linked mitochondrial defect characterised by dilated cardiomyopathy, neutropaenia and 3-methylglutaconic aciduria (3-MGCA). We report on two affected brothers with c.646G > A (p.G216R) TAZ gene mutations. The pathogenicity of the mutation, as indicated by the structure-based functional analyses, was further confirmed by abnormal monolysocardiolipin/cardiolipin ratio in dry blood spots of the patients as well as the occurrence of this mutation in another reported BTHS proband. In both brothers, 2D-echocardiography revealed some features of left ventricular noncompaction (LVNC) despite marked differences in the course of the disease; the eldest child presented with isolated cardiomyopathy from late infancy, whereas the youngest showed severe lactic acidosis without 3-MGCA during the neonatal period. An examination of the patients' fibroblast cultures revealed that extremely low mitochondrial membrane potentials (mtΔΨ about 50 % of the control value) dominated other unspecific mitochondrial changes detected (respiratory chain dysfunction, abnormal ROS production and depressed antioxidant defense). 1) Our studies confirm generalised mitochondrial dysfunction in the skeletal muscle and the fibroblasts of BTHS patients, especially a severe impairment in the mtΔΨ and the inhibition of complex V activity. It can be hypothesised that impaired mtΔΨ and mitochondrial ATP synthase activity may contribute to episodes of cardiac arrhythmia that occurred unexpectedly in BTHS patients. 2) Severe lactic acidosis without 3-methylglutaconic aciduria in male neonates as well as an asymptomatic mild left ventricular noncompaction may characterise the ranges of natural history of Barth syndrome.


Subject(s)
Barth Syndrome/complications , Barth Syndrome/physiopathology , Membrane Potential, Mitochondrial , Barth Syndrome/diagnosis , Barth Syndrome/etiology , Cells, Cultured , Child , Child, Preschool , Humans , Male , Muscle, Skeletal/pathology , Siblings
8.
Folia Neuropathol ; 61(2): 121-128, 2023.
Article in English | MEDLINE | ID: mdl-37587886

ABSTRACT

BCOR is expressed in a new brain tumour entity, i.e. 'CNS tumour with BCOR internal tandem duplication' (HGNET BCOR) but not in several other high grade paediatric brain tumours investigated. Immunohistochemical detection of BCOR expression may therefore serve as a potential diagnostic marker. Nevertheless, in rare paediatric glioma cases recurrent EP300-BCOR fusions were detected, which resulted in strong BCOR immunopositivity. We have therefore examined other, not analysed so far, types of central nervous system (CNS) tumours, pineoblastoma and germinoma, to assess a potential involvement of BCOR in these tumours. Levels of BCOR RNA expression were investigated by NanoString nCounter system analysis in a series of altogether 66 high grade paediatric tumours, including four pineoblastoma cases. Immunohistological detection of BCOR was performed in eight pineoblastoma, five germinoma and four atypical teratoid rhabdoid tumours (ATRTs), all located in the pineal region. We detected BCOR expression in all pineoblastomas, at the RNA and protein levels, but not in germinomas and ATRTs. Further analysis of pineoblastoma samples did not reveal the presence of either BCOR internal tandem duplication or BCOR fusion involvement. Positive immunohistological BCOR nuclear reaction in pineoblastoma may therefore differentiate this type of tumour from other high grade tumours located in the pineal region.


Subject(s)
Brain Neoplasms , Germinoma , Pineal Gland , Pinealoma , Rhabdoid Tumor , Humans , Child , Pinealoma/diagnosis , Pinealoma/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , RNA , Proto-Oncogene Proteins , Repressor Proteins/genetics
9.
Article in English | MEDLINE | ID: mdl-37284810

ABSTRACT

BACKGROUND: Liver transplantation is currently a treatment of choice in patients with end-stage liver disease. Acute cellular rejection (ACR), antibody-mediated rejection (AMR), and chronic rejection (ChR) are major causes of graft injury. Therefore, new markers predicting graft rejection are investigating. Apoptosis has been recently proposed as one of the mechanisms contributing to liver fibrosis in liver grafts. Coarse needle liver biopsy is still a gold standard in monitoring post-transplant pathologies. The aim of this study was to assess the utility of immunohistochemical (IHC) staining for M30 (cytokeratin 18), as a prognostic marker of rejection in pediatric recipients of liver transplant and predicting marker of liver fibrosis and worse follow-up. METHODS: The study enrolled 55 biopsies from 55 patients aged 2.37 to 18.9 years (median 13.87 years) who underwent protocolar liver biopsies taken 1-17 years after liver transplantation (median 8.36 years). The control group (positive control group) consisted of 26 biopsies from 16 patients in whom acute ACR was diagnosed. IHC staining for M30 (cytokeratin 18) and histochemical Azan staining were performed in all liver specimens. The following changes were re-evaluated in each specimen: features of ACR (the severity was assessed using RAI/Rejection Activity Index/Scale, which ranges from 3-9 points and include 3 histopathological changes suggestive of rejection), AMR or ChR; severity of fibrosis (Ishak Scale); presence of cholestasis and steatosis. Clinical parameters including laboratory tests of liver function (AST, ALT, GGTP, bilirubin) were also evaluated. RESULTS: M30 expression correlated with presence of acute cellular rejection. However, no relationship was found between M30 expression and severity of fibrosis. CONCLUSIONS: M30 staining, marker of apoptosis, seems to be a promising marker predicting acute cellular rejection.

10.
Redox Biol ; 55: 102400, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35863265

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a health concern affecting 24% of the population worldwide. Although the pathophysiologic mechanisms underlying disease are not fully clarified, mitochondrial dysfunction and oxidative stress are key players in disease progression. Consequently, efforts to develop more efficient pharmacologic strategies targeting mitochondria for NAFLD prevention/treatment are underway. The conjugation of caffeic acid anti-oxidant moiety with an alkyl linker and a triphenylphosphonium cation (TPP+), guided by structure-activity relationships, led to the development of a mitochondria-targeted anti-oxidant (AntiOxCIN4) with remarkable anti-oxidant properties. Recently, we described that AntiOxCIN4 improved mitochondrial function, upregulated anti-oxidant defense systems, and cellular quality control mechanisms (mitophagy/autophagy) via activation of the Nrf2/Keap1 pathway, preventing fatty acid-induced cell damage. Despite the data obtained, AntiOxCIN4 effects on cellular and mitochondrial energy metabolism in vivo were not studied. In the present work, we proposed that AntiOxCIN4 (2.5 mg/day/animal) may prevent non-alcoholic fatty liver (NAFL) phenotype development in a C57BL/6J mice fed with 30% high-fat, 30% high-sucrose diet for 16 weeks. HepG2 cells treated with AntiOxCIN4 (100 µM, 48 h) before the exposure to supraphysiologic free fatty acids (FFAs) (250 µM, 24 h) were used for complementary studies. AntiOxCIN4 decreased body (by 43%), liver weight (by 39%), and plasma hepatocyte damage markers in WD-fed mice. Hepatic-related parameters associated with a reduction of fat liver accumulation (by 600%) and the remodeling of fatty acyl chain composition compared with the WD-fed group were improved. Data from human HepG2 cells confirmed that a reduction of lipid droplets size and number can be a result from AntiOxCIN4-induced stimulation of fatty acid oxidation and mitochondrial OXPHOS remodeling. In WD-fed mice, AntiOxCIN4 also induced a hepatic metabolism remodeling by upregulating mitochondrial OXPHOS, anti-oxidant defense system and phospholipid membrane composition, which is mediated by the PGC-1α-SIRT3 axis. AntiOxCIN4 prevented lipid accumulation-driven autophagic flux impairment, by increasing lysosomal proteolytic capacity. AntiOxCIN4 improved NAFL phenotype of WD-fed mice, via three main mechanisms: a) increase mitochondrial function (fatty acid oxidation); b) stimulation anti-oxidant defense system (enzymatic and non-enzymatic) and; c) prevent the impairment in autophagy. Together, the findings support the potential use of AntiOxCIN4 in the prevention/treatment of NAFLD.

11.
Biochim Biophys Acta ; 1797(6-7): 952-60, 2010.
Article in English | MEDLINE | ID: mdl-20226758

ABSTRACT

p66Shc, the growth factor adaptor protein, can have a substantial impact on mitochondrial metabolism through regulation of cellular response to oxidative stress. We investigated relationships between the extent of p66Shc phosphorylation at Ser36, mitochondrial dysfunctions and an antioxidant defense reactions in fibroblasts derived from five patients with various mitochondrial disorders (two with mitochondrial DNA mutations and three with methylglutaconic aciduria and genetic defects localized, most probably, in nuclear genes). We found that in all these fibroblasts, the extent of p66Shc phosphorylation at Ser36 was significantly increased. This correlated with a substantially decreased level of mitochondrial superoxide dismutase (SOD2) in these cells. This suggest that SOD2 is under control of the Ser36 phosphorylation status of p66Shc protein. As a consequence, an intracellular oxidative stress and accumulation of damages caused by oxygen free radicals are observed in the cells.


Subject(s)
Mitochondrial Diseases/metabolism , Shc Signaling Adaptor Proteins/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Case-Control Studies , Cells, Cultured , DNA, Mitochondrial/genetics , Female , Fibroblasts/metabolism , Glutarates/urine , Humans , Infant , Infant, Newborn , Male , Mitochondrial Diseases/genetics , Models, Biological , Mutation , Oxidative Stress , Phosphorylation , Serine/chemistry , Shc Signaling Adaptor Proteins/chemistry , Skin/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1 , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
12.
Int J Mol Sci ; 12(8): 5373-89, 2011.
Article in English | MEDLINE | ID: mdl-21954365

ABSTRACT

Reactive oxygen species (ROS) are wieldy accepted as one of the main factors of the aging process. These highly reactive compounds modify nucleic acids, proteins and lipids and affect the functionality of mitochondria in the first case and ultimately of the cell. Any agent or genetic modification that affects ROS production and detoxification can be expected to influence longevity. On the other hand, genetic manipulations leading to increased longevity can be expected to involve cellular changes that affect ROS metabolism. The 66-kDa isoform of the growth factor adaptor Shc (p66Shc) has been recognized as a relevant factor to the oxygen radical theory of aging. The most recent data indicate that p66Shc protein regulates life span in mammals and its phosphorylation on serine 36 is important for the initiation of cell death upon oxidative stress. Moreover, there is strong evidence that apart from aging, p66Shc may be implicated in many oxidative stress-associated pathologies, such as diabetes, mitochondrial and neurodegenerative disorders and tumorigenesis. This article summarizes recent knowledge about the role of p66Shc in aging and senescence and how this protein can influence ROS production and detoxification, focusing on studies performed on skin and skin fibroblasts.


Subject(s)
Fibroblasts/metabolism , Shc Signaling Adaptor Proteins/metabolism , Adipocytes/metabolism , Animals , Antioxidants/metabolism , Calcium/metabolism , Cellular Senescence/genetics , Electron Transport , Homeostasis , Humans , Longevity , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Shc Signaling Adaptor Proteins/genetics , Signal Transduction
13.
Methods Mol Biol ; 2310: 69-77, 2021.
Article in English | MEDLINE | ID: mdl-34095999

ABSTRACT

Investigation of mitochondrial metabolism perturbations and successful diagnosis of patients with mitochondrial abnormalities often requires assessment of human samples like muscle or liver biopsy as well as autopsy material. Immunohistochemical and histochemical examination is an important technique to investigate mitochondrial dysfunction that combined with spectrophotometric and Blue Native electrophoresis techniques can be an important tool to provide diagnosis of mitochondrial disorders. In this chapter, we focus on technical description of the methods that are suitable to detect the activity of complex I, II, and IV of mitochondrial respiratory chain in frozen sections of brain, heart, muscle, and liver biopsies/autopsy. The protocols provided can be useful not only for general assessment of mitochondrial activity in studied material, but they are also successfully used in the diagnostic procedures in case of suspicion of mitochondrial disorders. In the age of high-performance NGS sequencing, these methods can be used to confirm whether mutations are pathogenic by proving their impact on the activity of individual respiratory chain complexes.


Subject(s)
Brain/enzymology , Electron Transport Chain Complex Proteins/analysis , Frozen Sections , Microscopy , Mitochondria, Liver/enzymology , Mitochondria, Muscle/enzymology , Staining and Labeling , Humans , Mitochondria, Heart/enzymology
14.
J Clin Med ; 10(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065573

ABSTRACT

Numerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins. The main aim of our study was to evaluate the potential correlation between the type of pediatric brain tumors, tumor malignancy grade, and the expression patterns of the investigated proteins.

15.
J Pathol Clin Res ; 7(6): 565-576, 2021 11.
Article in English | MEDLINE | ID: mdl-34314101

ABSTRACT

The majority of supratentorial ependymomas in children contain oncogenic fusions, such as ZFTA-RELA or YAP1-MAMLD1. In contrast, posterior fossa (PF) ependymomas lack recurrent somatic mutations and are classified based on gene expression or methylation profiling into group A (PFA) and group B (PFB). We have applied a novel method, NanoString nCounter Technology, to identify four molecular groups among 16 supratentorial and 50 PF paediatric ependymomas, using 4-5 group-specific signature genes. Clustering analysis of 16 supratentorial ependymomas revealed 9 tumours with a RELA fusion-positive signature (RELA+), 1 tumour with a YAP1 fusion-positive signature (YAP1+), and 6 not-classified tumours. Additionally, we identified one RELA+ tumour among historically diagnosed CNS primitive neuroectodermal tumour samples. Overall, 9 of 10 tumours with the RELA+ signature possessed the ZFTA-RELA fusion as detected by next-generation sequencing (p = 0.005). Similarly, the only tumour with a YAP1+ signature exhibited the YAP1-MAMLD1 fusion. Among the remaining unclassified ependymomas, which did not exhibit the ZFTA-RELA fusion, the ZFTA-MAML2 fusion was detected in one case. Notably, among nine ependymoma patients with the RELA+ signature, eight survived at least 5 years after diagnosis. Clustering analysis of PF tumours revealed 42 samples with PFA signatures and 7 samples with PFB signatures. Clinical characteristics of patients with PFA and PFB ependymomas corroborated the previous findings. In conclusion, we confirm here that the NanoString method is a useful single tool for the diagnosis of all four main molecular groups of ependymoma. The differences in reported survival rates warrant further clinical investigation of patients with the ZFTA-RELA fusion.


Subject(s)
Biomarkers, Tumor/genetics , Ependymoma/genetics , Gene Expression Profiling , Infratentorial Neoplasms/genetics , Supratentorial Neoplasms/genetics , Transcriptome , Age Factors , Cluster Analysis , Ependymoma/mortality , Ependymoma/pathology , Ependymoma/therapy , Humans , Infratentorial Neoplasms/mortality , Infratentorial Neoplasms/pathology , Infratentorial Neoplasms/therapy , Predictive Value of Tests , Prognosis , Retrospective Studies , Supratentorial Neoplasms/mortality , Supratentorial Neoplasms/pathology , Supratentorial Neoplasms/therapy
16.
Antioxidants (Basel) ; 9(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076261

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by the development of steatosis, which can ultimately compromise liver function. Mitochondria are key players in obesity-induced metabolic disorders; however, the distinct role of hypercaloric diet constituents in hepatic cellular oxidative stress and metabolism is unknown. Male mice were fed either a high-fat (HF) diet, a high-sucrose (HS) diet or a combined HF plus HS (HFHS) diet for 16 weeks. This study shows that hypercaloric diets caused steatosis; however, the HFHS diet induced severe fibrotic phenotype. At the mitochondrial level, lipidomic analysis showed an increased cardiolipin content for all tested diets. Despite this, no alterations were found in the coupling efficiency of oxidative phosphorylation and neither in mitochondrial fatty acid oxidation (FAO). Consistent with unchanged mitochondrial function, no alterations in mitochondrial-induced reactive oxygen species (ROS) and antioxidant capacity were found. In contrast, the HF and HS diets caused lipid peroxidation and provoked altered antioxidant enzyme levels/activities in liver tissue. Our work provides evidence that hepatic oxidative damage may be caused by augmented levels of peroxisomes and consequently higher peroxisomal FAO-induced ROS in the early NAFLD stage. Hepatic damage is also associated with autophagic flux impairment, which was demonstrated to be diet-type dependent. The HS diet induced a reduction in autophagosomal formation, while the HF diet reduced levels of cathepsins. The accumulation of damaged organelles could instigate hepatocyte injuries and NAFLD progression.

17.
Acta Neuropathol Commun ; 8(1): 105, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32650833

ABSTRACT

Four molecular types of rare central nervous system (CNS) tumors have been recently identified by gene methylation profiling: CNS Neuroblastoma with FOXR2 activation (CNS NB-FOXR2), CNS Ewing Sarcoma Family Tumor with CIC alteration (CNS EFT-CIC), CNS high grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1) and CNS high grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Although they are not represented in 2016 updated WHO classification of CNS tumors, their diagnostic recognition is important because of clinical consequences. We have introduced a diagnostic method based on transcription profiling of tumor specific signature genes from formalin-fixed, paraffin-embedded tumor blocks using NanoString nCounter Technology. Altogether, 14 out of 187 (7.4%) high grade pediatric brain tumors were diagnosed with either of four new CNS categories. Histopathological examination of the tumors confirmed, that they demonstrate a spectrum of morphology mimicking other CNS high grade tumors. However, they also exhibit some suggestive histopathological and immunohistochemical features that allow for a presumptive diagnosis prior to molecular assessment. Clinical characteristics of patients corroborated with the previous findings for CNS EFT-CIC, CNS NB-FOXR2 and CNS HGNET-MN1 patients, with a favorable survival rate for the latter two groups. Among six CNS HGNET-BCOR patients, three patients are long term survivors, suggesting possible heterogeneity within this molecular category of tumors. In summary, we confirmed the effectiveness of NanoString method using a single, multi-gene tumor specific signature and recommend this novel approach for identification of either one of the four newly described CNS tumor entities.


Subject(s)
Brain Neoplasms/diagnosis , Gene Expression Profiling/methods , Neoplasms, Neuroepithelial/diagnosis , Neuroblastoma/diagnosis , Sarcoma, Ewing/diagnosis , Brain Neoplasms/genetics , Child , Child, Preschool , Female , Forkhead Transcription Factors/genetics , Humans , Infant , Male , Neoplasms, Neuroepithelial/genetics , Neuroblastoma/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sarcoma, Ewing/genetics , Trans-Activators/genetics , Transcriptome , Tumor Suppressor Proteins/genetics
18.
Cells ; 8(3)2019 03 05.
Article in English | MEDLINE | ID: mdl-30841515

ABSTRACT

Medulloblastoma is a brain tumor that arises predominantly in infants and children. It is the most common pediatric brain malignancy. Around 25% of medulloblastomas are driven by constitutive activation of the Hedgehog signaling pathway. Hedgehog-driven medulloblastoma is often studied in the laboratory using genetic mouse models with overactive Hedgehog signaling, which recapitulate many of the pathological features of human Hedgehog-dependent tumors. However, we show here that on a molecular level the human and mouse HH-dependent MB are quite distinct, with human, but not mouse, tumors characterized by the presence of markers of increased oxidative phosphorylation and mitochondrial biogenesis. The latter suggests that, unlike for many other types of tumors, a switch to glycolytic metabolism might not be co-opted by human SHH-MB to perpetuate their survival and growth. This needs to be taken into consideration and could potentially be exploited in the design of therapies.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/metabolism , Organelle Biogenesis , Animals , Brain Neoplasms/genetics , Electron Transport Complex IV/metabolism , Gene Expression Regulation, Neoplastic , Humans , Medulloblastoma/genetics , Mice , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Oxidative Phosphorylation , Tumor Suppressor Protein p53/metabolism , Up-Regulation
19.
Cells ; 8(10)2019 10 08.
Article in English | MEDLINE | ID: mdl-31597406

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), an increasingly prevalent and underdiagnosed disease, is postulated to be caused by hepatic fat mediated pathological mechanisms. Mitochondrial dysfunction is proposed to be involved, but it is not known whether this is a pathological driver or a consequence of NAFLD. We postulate that changes to liver mitochondrial DNA (mtDNA) are an early event that precedes mitochondrial dysfunction and irreversible liver damage. To test this hypothesis, we evaluated the impact of diet on liver steatosis, hepatic mtDNA content, and levels of key mitochondrial proteins. Liver tissues from C57BL/6 mice fed with high fat (HF) diet (HFD) and Western diet (WD, high fat and high sugar) for 16 weeks were used. Steatosis/fibrosis were assessed using haematoxylin and eosin (H&E) Oil Red and Masson's trichome staining and collagen content. Total DNA was isolated, and mtDNA content was determined by quantifying absolute mtDNA copy number/cell using quantitative PCR. Selected mitochondrial proteins were analysed from a proteomics screen. As expected, both HFD and WD resulted in steatosis. Mouse liver contained a high mtDNA content (3617 ± 233 copies per cell), which significantly increased in HFD diet, but this increase was not functional, as indicated by changes in mitochondrial proteins. In the WD fed mice, liver dysfunction was accelerated alongside downregulation of mitochondrial oxidative phosphorylation (OXPHOS) and mtDNA replication machinery as well as upregulation of mtDNA-induced inflammatory pathways. These results demonstrate that diet induced changes in liver mtDNA can occur in a relatively short time; whether these contribute directly or indirectly to subsequent mitochondrial dysfunction and the development of NAFLD remains to be determined. If this hypothesis can be substantiated, then strategies to prevent mtDNA damage in the liver may be needed to prevent development and progression of NAFLD.


Subject(s)
DNA Damage , DNA, Mitochondrial , Diet, High-Fat/adverse effects , Diet, Western/adverse effects , Mitochondrial Proteins/analysis , Non-alcoholic Fatty Liver Disease/physiopathology , Animals , Disease Models, Animal , Liver/metabolism , Liver/physiopathology , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Mitochondria, Liver/physiology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Phosphorylation , Proteome/analysis
20.
Diagn Pathol ; 14(1): 103, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31493794

ABSTRACT

BACKGROUND: The most frequent histological types of rhabdomyosarcoma (RMS) in children are embryonal (ERMS) and alveolar (ARMS) tumours. The majority of ARMS are characterized by the presence of PAX3/7-FOXO1 gene fusion and have a worse prognosis than fusion gene-negative ARMS. However, identification of PAX3/7-FOXO1 fusion status is challenging when using formalin-fixed, paraffin-embedded (FFPE) material. Microarray analyses revealed that high expression of several genes is associated with PAX3/7-FOXO1 fusion status. Therefore, we investigated if immunohistochemical approach may detect surrogate marker genes as indicators of fusion gene-positive RMS. METHODS: Forty five RMS patients were included in the analysis and immunohistochemistry was applied to FFPE tissues collected at diagnosis. Protein expression of OLIG2, a novel marker in RMS, was investigated using antibody EP112 (Cell Marque). In addition already known two markers were also analyzed: TFAP2B using rabbit anti-TFAP2ß antibody (Santa Cruz Biotechnology) and ALK using anti-ALK antibody clone D5F3 #3633 (Cell Signalling). Fluorescence in situ hybridization (FISH) was performed on FFPE sections with FOXO1/PAX3 and/or FOXO1/PAX7 probes (Dual Colour Single Fusion Probe, Zytovision). RESULTS: Our analysis revealed that all three immunohistochemical markers are associated with the presence of PAX3/7-FOXO1 fusion: TFAP2B (p < 0.00001), OLIG2 (p = 0.0001) and ALK (p = 0.0007). Four ARMS had negative PAX3/7-FOXO1 status and none of them displayed positive reaction with the analysed markers. Positive reaction with OLIG2 (6 tumours) was always associated with the presence of PAX3/7-FOXO1 rearrangement. Two additional OLIG2 positive cases showed inconclusive FISH results, but were positive for TFAP2B and ALK, what suggests that these tumours expressed fusion positive signature. CONCLUSION: Our results indicate that TFAP2B, ALK and a novel marker OLIG2 may serve as surrogate markers for PAX3/7-FOXO1 status what is especially beneficial in cases where poor quality tumour tissue is not suitable for reliable genetic analyses or shows inconclusive result.


Subject(s)
Immunohistochemistry , Oligodendrocyte Transcription Factor 2/metabolism , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma/metabolism , Adolescent , Biomarkers/analysis , Child , Child, Preschool , Female , Forkhead Box Protein O1/metabolism , Forkhead Transcription Factors/genetics , Humans , Immunohistochemistry/methods , In Situ Hybridization, Fluorescence/methods , Infant , Male , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/metabolism , Paired Box Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL