Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Article in English | MEDLINE | ID: mdl-39085585

ABSTRACT

Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.

2.
Neuroimage ; 264: 119713, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36309333

ABSTRACT

Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.


Subject(s)
Brain , Transcranial Direct Current Stimulation , Humans , Brain/physiology , Magnetoencephalography , Transcranial Direct Current Stimulation/methods , Electric Stimulation
3.
Eur J Neurosci ; 55(11-12): 3402-3417, 2022 06.
Article in English | MEDLINE | ID: mdl-33048382

ABSTRACT

A variety of perceptual phenomena suggest that, in contrast to our everyday experience, our perception may be discrete rather than continuous. The possibility of such discrete sampling processes inevitably prompts the question of how such discretization is implemented in the brain. Evidence from neurophysiological measurements suggest that neural oscillations, particularly in the lower frequencies, may provide a mechanism by which such discretization can be implemented. It is hypothesized that cortical excitability is rhythmically enhanced or reduced along the positive and negative half-cycle of such oscillations. In recent years, rhythmic non-invasive brain stimulation approaches such as rhythmic transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are increasingly used to test this hypothesis. Both methods are thought to entrain endogenous brain oscillations, allowing them to alter their power, frequency, and phase in order to study their roles in perception. After a brief introduction to the core mechanisms of both methods, we will provide an overview of rTMS and tACS studies probing the role of brain oscillations for discretized perception in different domains and will contrast these results with unsuccessful attempts. Further, we will discuss methodological pitfalls and challenges associated with the methods.


Subject(s)
Transcranial Direct Current Stimulation , Brain/physiology , Perception , Transcranial Direct Current Stimulation/methods
4.
Brain Topogr ; 32(6): 1013-1019, 2019 11.
Article in English | MEDLINE | ID: mdl-31520249

ABSTRACT

Transcranial alternating current stimulation (tACS) is increasingly used as a tool to non-invasively modulate brain oscillations in a frequency specific manner. A growing body of neuroscience research utilizes tACS to probe causal relationships between neuronal oscillations and cognitive processes or explore its capability of restoring dysfunctional brain oscillations implicated in various neurological and psychiatric disease. However, the underlying mechanisms of action are yet poorly understood. Due to a massive electromagnetic artifact, overlapping with the frequency of interest, direct insights to effects during stimulation from electrophysiological signals (i.e. EEG/MEG) are methodologically challenging. In the current review, we provide an overview of analysis approaches to recover brain signals in M/EEG during tACS, detailing their underlying concepts as well as limitations and methodological and interpretational pitfalls. While different analysis strategies can achieve strong attenuation of the tACS artifact in M/EEG signals, a compete removal of it is not feasible so far. However, we argue that with a combination of careful experimental designs, robust outcome measures and appropriate control analyses, valid and important insights to online effects of tACS can be revealed, enriching our understanding of its basic underlying mechanisms.


Subject(s)
Brain/physiology , Transcranial Direct Current Stimulation/methods , Artifacts , Electroencephalography , Humans
5.
Neuroimage ; 179: 134-143, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29860086

ABSTRACT

Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6th-degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain.


Subject(s)
Algorithms , Artifacts , Brain/physiology , Transcranial Direct Current Stimulation/methods , Adult , Electroencephalography , Humans , Magnetoencephalography , Male , Signal Processing, Computer-Assisted , Transcranial Direct Current Stimulation/instrumentation
6.
Neuroimage ; 173: 3-12, 2018 06.
Article in English | MEDLINE | ID: mdl-29427848

ABSTRACT

Non-invasive brain stimulation to target specific network activity patterns, e.g. transcranial alternating current stimulation (tACS), has become an essential tool to understand the causal role of neuronal oscillations in cognition and behavior. However, conventional sinusoidal tACS limits the ability to record neuronal activity during stimulation and lacks spatial focality. One particularly promising new tACS stimulation paradigm uses amplitude-modulated (AM) high-frequency waveforms (AM-tACS) with a slow signal envelope that may overcome the limitations. Moreover. AM-tACS using high-frequency carrier signals is more tolerable than conventional tACS, e.g. in terms of skin irritation and occurrence of phosphenes, when applied at the same current intensities (e.g. 1-2 mA). Yet, the fundamental mechanism of neuronal target-engagement by AM-tACS waveforms has remained unknown. We used a computational model of cortex to investigate how AM-tACS modulates endogenous oscillations and compared the target engagement mechanism to the case of conventional (unmodulated) low-frequency tACS. Analysis of stimulation amplitude and frequency indicated that cortical oscillations were phase-locked to the envelope of the AM stimulation signal, which thus exhibits the same target engagement mechanism as conventional (unmodulated) low frequency tACS. However, in the computational model substantially higher current intensities were needed for AM-tACS than for low-frequency (unmodulated) tACS waveforms to achieve pronounced phase synchronization. Our analysis of the carrier frequency suggests that there might be a trade-off between the use of high-frequency carriers and the stimulation amplitude required for successful entrainment. Together, our computational simulations support the use of slow-envelope high frequency carrier AM waveforms as a tool for noninvasive modulation of brain oscillations. More empirical data will be needed to identify the optimal stimulation parameters and to evaluate tolerability and safety of both, AM- and conventional tACS.


Subject(s)
Alpha Rhythm/physiology , Cerebral Cortex/physiology , Computer Simulation , Models, Neurological , Transcranial Direct Current Stimulation/methods , Biological Clocks/physiology , Humans
7.
Clocks Sleep ; 6(2): 211-233, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38651390

ABSTRACT

Targeted memory reactivation (TMR) is an effective technique to enhance sleep-associated memory consolidation. The successful reactivation of memories by external reminder cues is typically accompanied by an event-related increase in theta oscillations, preceding better memory recall after sleep. However, it remains unclear whether the increase in theta oscillations is a causal factor or an epiphenomenon of successful TMR. Here, we used transcranial alternating current stimulation (tACS) to examine the causal role of theta oscillations for TMR during non-rapid eye movement (non-REM) sleep. Thirty-seven healthy participants learned Dutch-German word pairs before sleep. During non-REM sleep, we applied either theta-tACS or control-tACS (23 Hz) in blocks (9 min) in a randomised order, according to a within-subject design. One group of participants received tACS coupled with TMR time-locked two seconds after the reminder cue (time-locked group). Another group received tACS in a continuous manner while TMR cues were presented (continuous group). Contrary to our predictions, we observed no frequency-specific benefit of theta-tACS coupled with TMR during sleep on memory performance, neither for continuous nor time-locked stimulation. In fact, both stimulation protocols blocked the TMR-induced memory benefits during sleep, resulting in no memory enhancement by TMR in both the theta and control conditions. No frequency-specific effect was found on the power analyses of the electroencephalogram. We conclude that tACS might have an unspecific blocking effect on memory benefits typically observed after TMR during non-REM sleep.

8.
Sci Rep ; 14(1): 1505, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233455

ABSTRACT

It is often necessary to modulate the difficulty of an experimental task without changing physical stimulus characteristics that are known to modulate event-related potentials. Here, we developed a new, oddball-like visual discrimination task with varying levels of difficulty despite using almost identical visual stimuli. Gabor patches of one orientation served as frequent standard stimuli with 75% probability. Gabor patches with a slightly different orientation served as infrequent target stimuli (25% probability). Analyzing the behavioral outcomes revealed a successful modulation of task difficulty, i.e. the hard condition revealed decreased d' values and longer reaction times for standard stimuli. In addition, we recorded MEG and computed event-related fields in response to the stimuli. In line with our expectation, the amplitude of the P3m was reduced in the hard condition. We localized the sources of the P3m with a focus on those that are modulated by changes in task difficulty. The sources of P3m modulation by difficulty were found primarily in the centro-parietal regions of both hemispheres. Additionally, we found significant differences in source activity between the easy and hard conditions in parts of the pre and post-central gyrus and inferior parietal lobe. Our findings are in line with previous research suggesting that the brain areas responsible for the conventional P3m generators also contribute to a modulation by task difficulty.


Subject(s)
Electroencephalography , Evoked Potentials , Reaction Time/physiology , Brain/physiology , Visual Perception/physiology , Photic Stimulation
9.
Brain Sci ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884734

ABSTRACT

Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.

10.
Cortex ; 154: 299-310, 2022 09.
Article in English | MEDLINE | ID: mdl-35839572

ABSTRACT

Deep brain stimulation (DBS) provides clinical benefits for several neurological and psychiatric conditions. By overcoming the limitations and risks of conventional DBS, transcranial temporal interference stimulation (tTIS) has the potential to offer non-invasive stimulation of deep brain regions. However, research that investigates the efficacy of tTIS is limited to animal studies or computer simulations and its capability to modulate neural oscillations in humans has not been demonstrated so far. The method of tTIS is hypothesized to elicit its effects via neural entrainment, corresponding to the supposed mechanism of action underlying transcranial alternating current stimulation (tACS), another, more established non-invasive brain stimulation technique. Physiological effects of tACS are well established for cortical brain oscillations, but not for deep brain structures. In particular, aftereffects on the power of parieto-occipital alpha oscillations have been shown repeatedly. In a first attempt to test the efficacy of tTIS in the human brain, the current study thus seeks to compare the effects of tTIS to the well-studied aftereffect of tACS in the cortex. To investigate this research question, the current study compared MEG-recorded brain activity during a simple visual change detection task in 34 healthy subjects pre- and post-tTIS. Additionally, the effects of tTIS were contrasted to conventional tACS and a control stimulation. We expected that the parieto-occipital α-power will increase after tTIS and tACS, in contrast to the control stimulation. Overall, no difference between the experimental groups (tTIS, tACS and control stimulation) were found regarding the source-projected increase in α-power. Based on the results of the study two hypothesis can be made: tTIS, tACS and the control stimulation condition don't have an effect on human brain oscillations in the α-band, or, any experimental conditions of the current study can modulate brain oscillations in the α-band. Both hypotheses emphasize the importance of further studies investigating different carrier frequencies, and the comparison to sham stimulation.


Subject(s)
Benchmarking , Transcranial Direct Current Stimulation , Animals , Brain , Computer Simulation , Humans
11.
Front Hum Neurosci ; 15: 661432, 2021.
Article in English | MEDLINE | ID: mdl-34248524

ABSTRACT

Transcranial alternating current stimulation has emerged as an effective tool for the exploration of brain oscillations. By applying a weak alternating current between electrodes placed on the scalp matched to the endogenous frequency, tACS enables the specific modulation of targeted brain oscillations This results in alterations in cognitive functions or persistent physiological changes. Most studies that utilize tACS determine a fixed stimulation frequency prior to the stimulation that is kept constant throughout the experiment. Yet it is known that brain rhythms can encounter shifts in their endogenous frequency. This could potentially move the ongoing brain oscillations into a frequency region where it is no longer affected by the stimulation, thereby decreasing or negating the effect of tACS. Such an effect of a mismatch between stimulation frequency and endogenous frequency on the outcome of stimulation has been shown before for the parietal alpha-activity. In this study, we employed an intermittent closed loop stimulation protocol, where the stimulation is divided into short epochs, between which an EEG is recorded and rapidly analyzed to determine a new stimulation frequency for the next stimulation epoch. This stimulation protocol was tested in a three-group study against a classical fixed stimulation protocol and a sham-treatment. We targeted the parietal alpha rhythm and hypothesized that this setup will ensure a constant close match between the frequencies of tACS and alpha activity. This closer match should lead to an increased modulation of detection of visual luminance changes depending on the phase of the tACS and an increased rise in alpha peak power post stimulation when compared to a protocol with fixed pre-determined stimulation frequency. Contrary to our hypothesis, our results show that only a fixed stimulation protocol leads to a persistent increase in post-stimulation alpha power as compared to sham. Furthermore, in none of the stimulated groups significant modulation of detection performance occurred. While the lack of behavioral effects is inconclusive due to the short selection of different phase bins and trials, the physiological results suggest that a constant stimulation with a fixed frequency is actually beneficial, when the goal is to produce persistent synaptic changes.

12.
Front Neurosci ; 15: 602437, 2021.
Article in English | MEDLINE | ID: mdl-33867913

ABSTRACT

Hallucinations and illusions are two instances of perceptual experiences illustrating how perception might diverge from external sensory stimulations and be generated or altered based on internal brain states. The occurrence of these phenomena is not constrained to patient populations. Similar experiences can be elicited in healthy subjects by means of suitable experimental procedures. Studying the neural mechanisms underlying these experiences not only has the potential to expand our understanding of the brain's perceptual machinery but also of how it might get impaired. In the current study, we employed an auditory signal detection task to induce auditory illusions by presenting speech snippets at near detection threshold intensity embedded in noise. We investigated the neural correlates of auditory false perceptions by examining the EEG activity preceding the responses in speech absent (false alarm, FA) trials and comparing them to speech present (hit) trials. The results of the comparison of event-related potentials (ERPs) in the activation period vs. baseline revealed the presence of an early negativity (EN) and a late positivity (LP) similar in both hits and FAs, which were absent in misses, correct rejections (CR) and control button presses (BPs). We postulate that the EN and the LP might represent the auditory awareness negativity (AAN) and centro-parietal positivity (CPP) or P300, respectively. The event-related spectral perturbations (ERSPs) exhibited a common power enhancement in low frequencies (<4 Hz) in hits and FAs. The low-frequency power enhancement has been frequently shown to be accompanied with P300 as well as separately being a marker of perceptual awareness, referred to as slow cortical potentials (SCP). Furthermore, the comparison of hits vs. FAs showed a significantly higher LP amplitude and low frequency power in hits compared to FAs. Generally, the observed patterns in the present results resembled some of the major neural correlates associated with perceptual awareness in previous studies. Our findings provide evidence that the neural correlates associated with conscious perception, can be elicited in similar ways in both presence and absence of externally presented sensory stimuli. The present findings did not reveal any pre-stimulus alpha and beta modulations distinguishing conscious vs. unconscious perceptions.

13.
Sci Rep ; 11(1): 20357, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645895

ABSTRACT

Transcranial temporal interference stimulation (tTIS) is a novel non-invasive brain stimulation technique for electrical stimulation of neurons at depth. Deep brain regions are generally small in size, making precise targeting a necessity. The variability of electric fields across individual subjects resulting from the same tTIS montages is unknown so far and may be of major concern for precise tTIS targeting. Therefore, the aim of the current study is to investigate the variability of the electric fields due to tTIS across 25 subjects. To this end, the electric fields of different electrode montages consisting of two electrode pairs with different center frequencies were simulated in order to target selected regions-of-interest (ROIs) with tTIS. Moreover, we set out to compare the electric fields of tTIS with the electric fields of conventional tACS. The latter were also based on two electrode pairs, which, however, were driven in phase at a common frequency. Our results showed that the electric field strengths inside the ROIs (left hippocampus, left motor area and thalamus) during tTIS are variable on single subject level. In addition, tTIS stimulates more focally as compared to tACS with much weaker co-stimulation of cortical areas close to the stimulation electrodes. Electric fields inside the ROI were, however, comparable for both methods. Overall, our results emphasize the potential benefits of tTIS for the stimulation of deep targets, over conventional tACS. However, they also indicate a need for individualized stimulation montages to leverage the method to its fullest potential.


Subject(s)
Models, Neurological , Motor Cortex/physiopathology , Thalamus/physiopathology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male
14.
Brain Sci ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276533

ABSTRACT

Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows the manipulation of intrinsic brain oscillations. Numerous studies have applied tACS in the laboratory to enhance cognitive performance. With this systematic review, we aim to provide an overview of frequency-specific tACS effects on a range of cognitive functions in healthy adults. This may help to transfer stimulation protocols to real-world applications. We conducted a systematic literature search on PubMed and Cochrane databases and considered tACS studies in healthy adults (age > 18 years) that focused on cognitive performance. The search yielded n = 109 studies, of which n = 57 met the inclusion criteria. The results indicate that theta-tACS was beneficial for several cognitive functions, including working memory, executive functions, and declarative memory. Gamma-tACS enhanced performance in both auditory and visual perception but it did not change performance in tasks of executive functions. For attention, the results were less consistent but point to an improvement in performance with alpha- or gamma-tACS. We discuss these findings and point to important considerations that would precede a transfer to real-world applications.

15.
Sci Rep ; 10(1): 12270, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703961

ABSTRACT

Orienting spatial attention has been associated with interhemispheric asymmetry of power in the α- and γ-band. Specifically, increased α-power has been linked to the inhibition of unattended sensory streams (e.g. the unattended visual field), while increased γ-power is associated with active sensory processing. Here, we aimed to differentially modulate endogenous and exogenous visual-spatial attention using transcranial alternating current stimulation (tACS). In a single-blind, within-subject design, participants performed several blocks of a spatial cueing task comprised of endogenous and exogenous cues while receiving lateralized α- or γ-tACS or no stimulation over left or right occipital-parietal areas. We found a significant, differential effect of α- and γ-tACS on endogenous (top-down) spatial attention but not on exogenous (bottom-up) attention. The effect was specific to tACS applied to the left hemisphere and driven by a modulation of attentional disengagement and re-orientation as measured during invalid trials. Our results indicate a causal role of α-/γ-oscillations for top-down (endogenous) attention. They may further suggest a left hemispheric dominance in controlling interhemispheric α-/γ-power asymmetry. The absence of an effect on exogenous attention may be indicative of a differential role of α-/γ-oscillations during different attention types or spatially distinct attentional subsystems.


Subject(s)
Attention , Functional Laterality , Orientation, Spatial , Parietal Lobe/physiology , Transcranial Direct Current Stimulation , Visual Perception , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
17.
Nat Commun ; 10(1): 5427, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780668

ABSTRACT

Transcranial electrical stimulation (tES) of the brain can have variable effects, plausibly driven by individual differences in neuroanatomy and resulting differences of the electric fields inside the brain. Here, we integrated individual simulations of electric fields during tES with source localization to predict variability of transcranial alternating current stimulation (tACS) aftereffects on α-oscillations. In two experiments, participants received 20-min of either α-tACS (1 mA) or sham stimulation. Magnetoencephalogram (MEG) was recorded for 10-min before and after stimulation. tACS caused a larger power increase in the α-band compared to sham. The variability of this effect was significantly predicted by measures derived from individual electric field modeling. Our results directly link electric field variability to variability of tACS outcomes, underline the importance of individualizing stimulation protocols, and provide a novel approach to analyze tACS effects in terms of dose-response relationships.


Subject(s)
Alpha Rhythm/physiology , Brain/physiology , Transcranial Direct Current Stimulation/methods , Adult , Biological Variation, Population , Brain/diagnostic imaging , Electromagnetic Fields , Female , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Male , Young Adult
18.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-30073188

ABSTRACT

Non-invasive approaches to modulate oscillatory activity in the brain are increasingly popular in the scientific community. Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations in a frequency-specific manner. However, due to a massive stimulation artifact at the targeted frequency, little is known about effects of tACS during stimulation. It remains unclear how the continuous application of tACS affects event-related oscillations during cognitive tasks. Depending on whether tACS influences pre- or post-stimulus oscillations, or both, the endogenous, event-related oscillatory dynamics could be pushed in various directions or not at all. A better understanding of these effects is crucial to plan, predict, and understand outcomes of solely behavioral tACS experiments. In the present study, a recently proposed procedure to suppress tACS artifacts by projecting MEG data into source-space using spatial filtering was utilized to recover event-related power modulations in the alpha-band during a mental rotation task. MEG data of 25 human subjects was continuously recorded. After 10-minute baseline measurement, participants received either 20 minutes of tACS at their individual alpha frequency or sham stimulation. Another 40 minutes of MEG data were acquired thereafter. Data were projected into source-space and carefully examined for residual artifacts. Results revealed strong facilitation of event-related power modulations in the alpha-band during tACS application. These results provide first direct evidence that tACS does not counteract top-down suppression of intrinsic oscillations, but rather enhances pre-existent power modulations within the range of the individual alpha (= stimulation) frequency.


Subject(s)
Alpha Rhythm , Brain/physiology , Magnetoencephalography , Pattern Recognition, Visual/physiology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Signal Processing, Computer-Assisted , Visual Perception , Young Adult
19.
Front Hum Neurosci ; 11: 2, 2017.
Article in English | MEDLINE | ID: mdl-28197084

ABSTRACT

Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation.

20.
Front Hum Neurosci ; 10: 245, 2016.
Article in English | MEDLINE | ID: mdl-27252642

ABSTRACT

Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to increase power of endogenous brain oscillations in the range of the stimulated frequency after stimulation. In the alpha band this aftereffect has been shown to persist for at least 30 min. However, in most experiments the aftereffect exceeded the duration of the measurement. Thus, it remains unclear how the effect develops beyond these 30 min and when it decays. The current study aimed to extend existing findings by monitoring the physiological aftereffect of tACS in the alpha range for an extended period of 90 min post-stimulation. To this end participants received either 20 min of tACS or sham stimulation with intensities below their individual sensation threshold at the individual alpha frequency (IAF). Electroencephalogram (EEG) was acquired during 3 min before and 90 min after stimulation. Subjects performed a visual vigilance task during the whole measurement. While the enhanced power in the individual alpha band did not return back to pre-stimulation baseline in the stimulation group, the difference between stimulation and sham diminishes after 70 min due to a natural alpha increase of the sham group.

SELECTION OF CITATIONS
SEARCH DETAIL