Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 615(7950): 127-133, 2023 03.
Article in English | MEDLINE | ID: mdl-36813966

ABSTRACT

Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.


Subject(s)
Cell Culture Techniques , Cell Proliferation , Cytokines , Hematopoietic Stem Cells , Humans , Cell Proliferation/drug effects , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Culture Techniques/methods , Albumins , Caprolactam , Polymers , Receptors, Thrombopoietin , Transplantation, Heterologous , Single-Cell Gene Expression Analysis
2.
Am J Hum Genet ; 111(5): 896-912, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38653249

ABSTRACT

Porokeratosis is a clonal keratinization disorder characterized by solitary, linearly arranged, or generally distributed multiple skin lesions. Previous studies showed that genetic alterations in MVK, PMVK, MVD, or FDPS-genes in the mevalonate pathway-cause hereditary porokeratosis, with skin lesions harboring germline and lesion-specific somatic variants on opposite alleles. Here, we identified non-hereditary porokeratosis associated with epigenetic silencing of FDFT1, another gene in the mevalonate pathway. Skin lesions of the generalized form had germline and lesion-specific somatic variants on opposite alleles in FDFT1, representing FDFT1-associated hereditary porokeratosis identified in this study. Conversely, lesions of the solitary or linearly arranged localized form had somatic bi-allelic promoter hypermethylation or mono-allelic promoter hypermethylation with somatic genetic alterations on opposite alleles in FDFT1, indicating non-hereditary porokeratosis. FDFT1 localization was uniformly diminished within the lesions, and lesion-derived keratinocytes showed cholesterol dependence for cell growth and altered expression of genes related to cell-cycle and epidermal development, confirming that lesions form by clonal expansion of FDFT1-deficient keratinocytes. In some individuals with the localized form, gene-specific promoter hypermethylation of FDFT1 was detected in morphologically normal epidermis adjacent to methylation-related lesions but not distal to these lesions, suggesting that asymptomatic somatic epigenetic mosaicism of FDFT1 predisposes certain skin areas to the disease. Finally, consistent with its genetic etiology, topical statin treatment ameliorated lesions in FDFT1-deficient porokeratosis. In conclusion, we identified bi-allelic genetic and/or epigenetic alterations of FDFT1 as a cause of porokeratosis and shed light on the pathogenesis of skin mosaicism involving clonal expansion of epigenetically altered cells.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Keratinocytes , Mosaicism , Porokeratosis , Promoter Regions, Genetic , Porokeratosis/genetics , Porokeratosis/pathology , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Promoter Regions, Genetic/genetics , Male , Alleles , Female
3.
Blood ; 143(23): 2401-2413, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38427753

ABSTRACT

ABSTRACT: It remains elusive how driver mutations, including those detected in circulating tumor DNA (ctDNA), affect prognosis in relapsed/refractory multiple myeloma (RRMM). Here, we performed targeted-capture sequencing using bone marrow plasma cells (BMPCs) and ctDNA of 261 RRMM cases uniformly treated with ixazomib, lenalidomide, and dexamethasone in a multicenter, prospective, observational study. We detected 24 and 47 recurrently mutated genes in BMPC and ctDNA, respectively. In addition to clonal hematopoiesis-associated mutations, varying proportion of driver mutations, particularly TP53 mutations (59.2% of mutated cases), were present in only ctDNA, suggesting their subclonal origin. In univariable analyses, ctDNA mutations of KRAS, TP53, DIS3, BRAF, NRAS, and ATM were associated with worse progression-free survival (PFS). BMPC mutations of TP53 and KRAS were associated with inferior PFS, whereas KRAS mutations were prognostically relevant only when detected in both BMPC and ctDNA. A total number of ctDNA mutations in the 6 relevant genes was a strong prognostic predictor (2-year PFS rates: 57.3%, 22.7%, and 0% for 0, 1, and ≥2 mutations, respectively) and independent of clinical factors and plasma DNA concentration. Using the number of ctDNA mutations, plasma DNA concentration, and clinical factors, we developed a prognostic index, classifying patients into 3 categories with 2-year PFS rates of 57.9%, 28.6%, and 0%. Serial analysis of ctDNA mutations in 94 cases revealed that TP53 and KRAS mutations frequently emerge after therapy. Thus, we clarify the genetic characteristics and clonal architecture of ctDNA mutations and demonstrate their superiority over BMPC mutations for prognostic prediction in RRMM. This study is a part of the C16042 study, which is registered at www.clinicaltrials.gov as #NCT03433001.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Boron Compounds , Circulating Tumor DNA , Dexamethasone , Glycine , Lenalidomide , Multiple Myeloma , Humans , Lenalidomide/administration & dosage , Lenalidomide/therapeutic use , Female , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/therapeutic use , Male , Aged , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Prognosis , Dexamethasone/administration & dosage , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Boron Compounds/therapeutic use , Boron Compounds/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged, 80 and over , Mutation , Adult , Prospective Studies , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Biomarkers, Tumor/genetics
4.
Nature ; 582(7810): 95-99, 2020 06.
Article in English | MEDLINE | ID: mdl-32494066

ABSTRACT

Sporadic reports have described cancer cases in which multiple driver mutations (MMs) occur in the same oncogene1,2. However, the overall landscape and relevance of MMs remain elusive. Here we carried out a pan-cancer analysis of 60,954 cancer samples, and identified 14 pan-cancer and 6 cancer-type-specific oncogenes in which MMs occur more frequently than expected: 9% of samples with at least one mutation in these genes harboured MMs. In various oncogenes, MMs are preferentially present in cis and show markedly different mutational patterns compared with single mutations in terms of type (missense mutations versus in-frame indels), position and amino-acid substitution, suggesting a cis-acting effect on mutational selection. MMs show an overrepresentation of functionally weak, infrequent mutations, which confer enhanced oncogenicity in combination. Cells with MMs in the PIK3CA and NOTCH1 genes exhibit stronger dependencies on the mutated genes themselves, enhanced downstream signalling activation and/or greater sensitivity to inhibitory drugs than those with single mutations. Together oncogenic MMs are a relatively common driver event, providing the underlying mechanism for clonal selection of suboptimal mutations that are individually rare but collectively account for a substantial proportion of oncogenic mutations.


Subject(s)
Carcinogenesis/genetics , Mutation/genetics , Neoplasms/genetics , Oncogenes/genetics , Animals , Bias , Cell Lineage , Class I Phosphatidylinositol 3-Kinases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Humans , Mice , Neoplasms/pathology , Selection, Genetic
5.
Nature ; 577(7789): 260-265, 2020 01.
Article in English | MEDLINE | ID: mdl-31853061

ABSTRACT

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colitis, Ulcerative/genetics , Mutation Rate , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colorectal Neoplasms/genetics , Humans , Mice , Signal Transduction
6.
Nature ; 565(7739): 312-317, 2019 01.
Article in English | MEDLINE | ID: mdl-30602793

ABSTRACT

Clonal expansion in aged normal tissues has been implicated in the development of cancer. However, the chronology and risk dependence of the expansion are poorly understood. Here we intensively sequence 682 micro-scale oesophageal samples and show, in physiologically normal oesophageal epithelia, the progressive age-related expansion of clones that carry mutations in driver genes (predominantly NOTCH1), which is substantially accelerated by alcohol consumption and by smoking. Driver-mutated clones emerge multifocally from early childhood and increase their number and size with ageing, and ultimately replace almost the entire oesophageal epithelium in the extremely elderly. Compared with mutations in oesophageal cancer, there is a marked overrepresentation of NOTCH1 and PPM1D mutations in physiologically normal oesophageal epithelia; these mutations can be acquired before late adolescence (as early as early infancy) and significantly increase in number with heavy smoking and drinking. The remodelling of the oesophageal epithelium by driver-mutated clones is an inevitable consequence of normal ageing, which-depending on lifestyle risks-may affect cancer development.


Subject(s)
Aging/genetics , Aging/pathology , Epithelium , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Mutation , Precancerous Conditions/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alcohol Drinking/genetics , Biopsy , Cell Count , Cell Transformation, Neoplastic/genetics , Child , Child, Preschool , Clone Cells/metabolism , Clone Cells/pathology , DNA Copy Number Variations , Epithelium/metabolism , Epithelium/pathology , Evolution, Molecular , Female , Gene-Environment Interaction , Genome, Human/genetics , Humans , Infant , Life Style , Male , Middle Aged , Mutation Accumulation , Protein Phosphatase 2C/genetics , Receptor, Notch1/genetics , Risk Factors , Sequence Analysis, DNA , Single-Cell Analysis , Smoking/genetics , Young Adult
7.
Nucleic Acids Res ; 51(14): e74, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37336583

ABSTRACT

We present our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. The current version of nanomonsv includes two detection modules, Canonical SV module, and Single breakend SV module. Using tumor/control paired long-read sequencing data from three cancer and their matched lymphoblastoid lines, we demonstrate that Canonical SV module can identify somatic SVs that can be captured by short-read technologies with higher precision and recall than existing methods. In addition, we have developed a workflow to classify mobile element insertions while elucidating their in-depth properties, such as 5' truncations, internal inversions, as well as source sites for 3' transductions. Furthermore, Single breakend SV module enables the detection of complex SVs that can only be identified by long-reads, such as SVs involving highly-repetitive centromeric sequences, and LINE1- and virus-mediated rearrangements. In summary, our approaches applied to cancer long-read sequencing data can reveal various features of somatic SVs and will lead to a better understanding of mutational processes and functional consequences of somatic SVs.


Subject(s)
Genomic Structural Variation , Neoplasms , Software , Humans , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasms/genetics , Sequence Analysis, DNA/methods
8.
Cancer Sci ; 115(1): 310-320, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950425

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) establishes chronic infection in humans and induces a T-cell malignancy called adult T-cell leukemia-lymphoma (ATL) and several inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Persistent HTLV-1 infection is established under the pressure of host immunity, and therefore the immune response against HTLV-1 is thought to reflect the status of the disease it causes. Indeed, it is known that cellular immunity against viral antigens is suppressed in ATL patients compared to HAM/TSP patients. In this study, we show that profiling the humoral immunity to several HTLV-1 antigens, such as Gag, Env, and Tax, and measuring proviral load are useful tools for classifying disease status and predicting disease development. Using targeted sequencing, we found that several carriers whom this profiling method predicted to be at high risk for developing ATL indeed harbored driver mutations of ATL. The clonality of HTLV-1-infected cells in those carriers was still polyclonal; it is consistent with an early stage of leukemogenesis. Furthermore, this study revealed significance of anti-Gag proteins to predict high risk group in HTLV-1 carriers. Consistent with this finding, anti-Gag cytotoxic T lymphocytes (CTLs) were increased in patients who received hematopoietic stem cell transplantation and achieved remission state, indicating the significance of anti-Gag CTLs for disease control. Our findings suggest that our strategy that combines anti-HTLV-1 antibodies and proviral load may be useful for prediction of the development of HTLV-1-associated diseases.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Paraparesis, Tropical Spastic , Adult , Humans , Human T-lymphotropic virus 1/genetics , Proviruses/genetics , Biomarkers , Viral Load
9.
Cancer Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757410

ABSTRACT

The anti-CD38 antibody daratumumab (Dara) has been reported to improve the prognosis of multiple myeloma (MM) patients, but its use before autologous stem cell transplantation (ASCT) remains controversial. To clarify the prognostic impact of Dara before ASCT on MM, we performed a retrospective observational analysis. We analyzed 2626 patients who underwent ASCT between 2017 and 2020. In the comparison between patients not administered Dara (Dara- group) and those administered Dara (Dara+ group), the 1-year progression-free survival (PFS) rates were 87.4% and 77.3% and the 1-year overall survival (OS) rates were 96.7% and 90.0%, respectively. In multivariate analysis, age <65 years (p = 0.015), low international staging system (ISS) stage (p < 0.001), absence of unfavorable cytogenic abnormalities (p < 0.001), no Dara use before ASCT (p = 0.037), and good treatment response before ASCT (p < 0.001) were independently associated with superior PFS. In matched pair analysis, the PFS/OS of the Dara- group were also significantly superior. For MM patients who achieved complete or very good partial response (CR/VGPR) by Dara addition before ASCT, both PFS and OS significantly improved. However, in patients who did not achieve CR/VGPR before ASCT, the PFS/OS of the Dara+ group were significantly inferior to those of the Dara- group.

10.
Br J Haematol ; 204(2): 612-622, 2024 02.
Article in English | MEDLINE | ID: mdl-37857379

ABSTRACT

Allogeneic haematopoietic stem cell transplantation (HCT) is the curative treatment for myelodysplastic syndrome with a complex karyotype (CK-MDS). However, only a few studies have been limited to patients with CK-MDS undergoing allogeneic HCT. This study aimed to identify the risk factors for patients with CK-MDS undergoing allogeneic HCT. We included 691 patients with CK-MDS who received their first allogeneic HCT. The overall survival (OS) was the primary end-point, estimated using the Kaplan-Meier method. Prognostic factors were identified using a Cox proportional hazards model. The 3-year OS was 29.8% (95% confidence interval [CI]: 26.3-33.3). In the multivariable analysis, older age (hazard ratio [HR]: 1.44, 95% CI: 1.11-1.88), male sex (HR: 1.38, 95% CI: 1.11-1.71), poor haematopoietic cell transplant comorbidity index (HR: 1.47, 95% CI: 1.20-1.81), red blood cell transfusion requirement (HR: 1.58, 95% CI: 1.13-2.20), platelet transfusion requirement (HR: 1.85, 95% CI: 1.46-2.35), not-complete remission (HR: 1.55, 95% CI: 1.16-2.06), a high number of karyotype abnormality (HR: 1.63, 95% CI: 1.18-2.25) and monosomal karyotype (HR: 1.49, 95% CI: 1.05-2.12) were significantly associated with OS. Thus, the 3-year OS of allogeneic HCT was 29.8% in patients with CK-MDS, and we identified risk factors associated with poor OS.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes , Humans , Male , Hematopoietic Stem Cell Transplantation/methods , Prognosis , Abnormal Karyotype , Risk Factors , Retrospective Studies
11.
Blood ; 140(23): 2463-2476, 2022 12 08.
Article in English | MEDLINE | ID: mdl-35960849

ABSTRACT

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of hematological cancers arising from the malignant transformation of mature T cells. In a cohort of 28 PTCL cases, we identified recurrent overexpression of MYCN, a member of the MYC family of oncogenic transcription factors. Approximately half of all PTCL cases was characterized by a MYC expression signature. Inducible expression of MYCN in lymphoid cells in a mouse model caused T-cell lymphoma that recapitulated human PTCL with an MYC expression signature. Integration of mouse and human expression data identified EZH2 as a key downstream target of MYCN. Remarkably, EZH2 was found to be an essential cofactor for the transcriptional activation of the MYCN-driven gene expression program, which was independent of methyltransferase activity but dependent on phosphorylation by CDK1. MYCN-driven T-cell lymphoma was sensitive to EZH2 degradation or CDK1 inhibition, which displayed synergy with US Food and Drug Administration-approved histone deacetylase (HDAC) inhibitors.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Lymphoma, T-Cell, Peripheral , N-Myc Proto-Oncogene Protein , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Lymphoma, T-Cell, Peripheral/genetics , N-Myc Proto-Oncogene Protein/genetics
12.
Blood ; 139(7): 967-982, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34695199

ABSTRACT

Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm immunophenotypically resembling regulatory T cells, associated with human T-cell leukemia virus type-1. Here, we performed whole-genome sequencing (WGS) of 150 ATL cases to reveal the overarching landscape of genetic alterations in ATL. We discovered frequent (33%) loss-of-function alterations preferentially targeting the CIC long isoform, which were overlooked by previous exome-centric studies of various cancer types. Long but not short isoform-specific inactivation of Cic selectively increased CD4+CD25+Foxp3+ T cells in vivo. We also found recurrent (13%) 3'-truncations of REL, which induce transcriptional upregulation and generate gain-of-function proteins. More importantly, REL truncations are also common in diffuse large B-cell lymphoma, especially in germinal center B-cell-like subtype (12%). In the non-coding genome, we identified recurrent mutations in regulatory elements, particularly splice sites, of several driver genes. In addition, we characterized the different mutational processes operative in clustered hypermutation sites within and outside immunoglobulin/T-cell receptor genes and identified the mutational enrichment at the binding sites of host and viral transcription factors, suggesting their activities in ATL. By combining the analyses for coding and noncoding mutations, structural variations, and copy number alterations, we discovered 56 recurrently altered driver genes, including 11 novel ones. Finally, ATL cases were classified into 2 molecular groups with distinct clinical and genetic characteristics based on the driver alteration profile. Our findings not only help to improve diagnostic and therapeutic strategies in ATL, but also provide insights into T-cell biology and have implications for genome-wide cancer driver discovery.


Subject(s)
Ataxin-1/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Leukemia-Lymphoma, Adult T-Cell/pathology , Mutation , Proto-Oncogene Proteins c-rel/genetics , Repressor Proteins/genetics , Animals , DNA Copy Number Variations , Female , Genome, Human , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Mice , Mice, Inbred C57BL , Prognosis , Survival Rate , Exome Sequencing
13.
Blood ; 140(21): 2193-2227, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36001803

ABSTRACT

With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.


Subject(s)
Lymphoma , Neoplasms , Humans , Lymphoma/diagnosis , Lymphoma/genetics , Lymphoma/therapy , Genomics/methods , Precision Medicine , High-Throughput Nucleotide Sequencing , Clinical Decision-Making
14.
Br J Haematol ; 203(3): 446-459, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37614023

ABSTRACT

The graft-versus-lymphoma (GVL) effect and its association with acute and chronic GVHD (aGVHD, cGVHD) has not been comprehensively elucidated. We retrospectively analysed 2204 Japanese patients with non-Hodgkin lymphomas (NHLs; indolent B-NHLs, n = 689; aggressive B-NHLs, n = 720; mature T/NK-NHLs, n = 795) receiving a first allo-HSCT in 2003-2017. Pre-transplant lymphoma control showed complete response (CR) in 759 and non-CR in 1445. We assessed the impact of aGVHD/cGVHD on lymphoma progression and other outcomes. Although aGVHD/cGVHD showed no statistical impact on lymphoma progression in the overall cohort, their impact was clear in certain groups: Grade I-II aGVHD in CR patients (HR, 0.63; 95% CI, 0.43-0.91), especially in mature T/NK-NHL (HR, 0.46; 95% CI, 0.26-0.83) and extensive cGVHD in patients with mature aggressive B-NHLs (HR, 0.55; 95% CI, 0.31-0.97). In total, limited cGVHD was associated with superior survivals (progression-free survival: HR, 0.71; 95% CI, 0.56-0.90), whereas severe GVHDs showed negative impacts on them. Our results support the presence of GVL effects differentially associated with GVHD in different lymphoma subtypes/controls. Meanwhile, it was also suggested that we should manage GVHDs within a limited activity, considering the negative impact of severe GVHDs. As pre-transplant lymphoma control remains a strong factor influencing transplant outcomes, improving its management is an important issue to be addressed.

15.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Article in English | MEDLINE | ID: mdl-34543356

ABSTRACT

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Gene Products, tax/metabolism , HTLV-I Infections/metabolism , Leukemia-Lymphoma, Adult T-Cell/virology , Retroviridae Proteins/metabolism , HEK293 Cells , HTLV-I Infections/etiology , Human T-lymphotropic virus 1 , Humans , Jurkat Cells , RNA Splicing , RNA, Messenger , Splicing Factor U2AF/metabolism
16.
Blood ; 137(11): 1491-1502, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33512416

ABSTRACT

Intravascular large B-cell lymphoma (IVLBCL) is a unique type of extranodal lymphoma characterized by selective growth of tumor cells in small vessels without lymphadenopathy. Greater understanding of the molecular pathogenesis of IVLBCL is hampered by the paucity of lymphoma cells in biopsy specimens, creating a limitation in obtaining sufficient tumor materials. To uncover the genetic landscape of IVLBCL, we performed whole-exome sequencing (WES) of 21 patients with IVLBCL using plasma-derived cell-free DNA (cfDNA) (n = 18), patient-derived xenograft tumors (n = 4), and tumor DNA from bone marrow (BM) mononuclear cells (n = 2). The concentration of cfDNA in IVLBCL was significantly higher than that in diffuse large B-cell lymphoma (DLBCL) (P < .0001) and healthy donors (P = .0053), allowing us to perform WES; most mutations detected in BM tumor DNA were successfully captured in cfDNA and xenograft. IVLBCL showed a high frequency of genetic lesions characteristic of activated B-cell-type DLBCL, with the former showing conspicuously higher frequencies (compared with nodal DLBCL) of mutations in MYD88 (57%), CD79B (67%), SETD1B (57%), and HLA-B (57%). We also found that 8 IVLBCL (38%) harbored rearrangements of programmed cell death 1 ligand 1 and 2 (PD-L1/PD-L2) involving the 3' untranslated region; such rearrangements are implicated in immune evasion via PD-L1/PD-L2 overexpression. Our data demonstrate the utility of cfDNA and imply important roles for immune evasion in IVLBCL pathogenesis and PD-1/PD-L1/PD-L2 blockade in therapeutics for IVLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Tumor Escape , Vascular Neoplasms/genetics , Aged , Aged, 80 and over , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Cell-Free Nucleic Acids/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Male , Middle Aged , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Vascular Neoplasms/immunology , Exome Sequencing
17.
Haematologica ; 108(12): 3399-3408, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37470160

ABSTRACT

The incidence of second primary malignancies (SPM) in long-term survivors of multiple myeloma (MM) is increasing because of increased life expectancy. We retrospectively analyzed the risk factors for SPM in patients with MM after autologous stem cell transplantation (ASCT) before and after the introduction of proteasome inhibitors and immunomodulatory drugs (IMiDs). In total, 2,340 patients newly diagnosed with MM who underwent ASCT between 1995 and 2016 were enrolled in this study. Forty-three patients developed SPM (29 solid, 12 hematological, and 2 unknown tumors), with cumulative incidence rates of 0.8% and 2.5% at 24 and 60 months, respectively. The cumulative incidence rates of hematological and solid SPM at 60 months were 0.8% and 1.8%, respectively. The overall survival (OS) rate at 60 months after ASCT was 62.9% and the OS rates after the diagnosis of SPM at 24 months were 72.2% for hematological SPM and 70.9% for solid SPM. Multivariate analysis revealed that the use of IMiDs (P=0.024) and radiation (P=0.002) were significant independent risk factors for SPM. The probabilities of developing SPM and death due to other causes (mainly MM) at 60 months were 2.5% and 36.5%, respectively, indicating that the risk of SPM was lower than that of death from MM. Furthermore, SPM between the pre-novel and novel agent eras (ASCT between 2007 and 2016) groups significantly increased (1.9% vs. 4.3% at 60 months; P=0.022). The early occurrence of SPM after ASCT should be monitored cautiously.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Neoplasms, Second Primary , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Multiple Myeloma/drug therapy , Multiple Myeloma/complications , Immunomodulating Agents , Proteasome Inhibitors/adverse effects , Retrospective Studies , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/etiology , Transplantation, Autologous/adverse effects , Risk Factors , Stem Cell Transplantation
18.
Haematologica ; 108(8): 2178-2191, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36794502

ABSTRACT

The prognosis of aggressive adult T-cell leukemia/lymphoma (ATL) is poor, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment. In order to identify favorable prognostic patients after intensive chemotherapy, and who therefore might not require upfront allo-HSCT, we aimed to improve risk stratification of aggressive ATL patients aged <70 years. The clinical risk factors and genetic mutations were incorporated into risk modeling for overall survival (OS). We generated the m7-ATLPI, a clinicogenetic risk model for OS, that included the ATL prognostic index (PI) (ATL-PI) risk category, and non-silent mutations in seven genes, namely TP53, IRF4, RHOA, PRKCB, CARD11, CCR7, and GATA3. In the training cohort of 99 patients, the m7-ATLPI identified a low-, intermediate-, and highrisk group with 2-year OS of 100%, 43%, and 19%, respectively (hazard ratio [HR] =5.46; P<0.0001). The m7-ATLPI achieved superior risk stratification compared to the current ATL-PI (C-index 0.92 vs. 0.85, respectively). In the validation cohort of 84 patients, the m7-ATLPI defined low-, intermediate-, and high-risk groups with a 2-year OS of 81%, 30%, and 0%, respectively (HR=2.33; P=0.0094), and the model again outperformed the ATL-PI (C-index 0.72 vs. 0.70, respectively). The simplified m7-ATLPI, which is easier to use in clinical practice, achieved superior risk stratification compared to the ATLPI, as did the original m7-ATLPI; the simplified version was calculated by summing the following: high-risk ATL-PI category (+10), low-risk ATL-PI category (-4), and non-silent mutations in TP53 (+4), IRF4 (+3), RHOA (+1), PRKCB (+1), CARD11 (+0.5), CCR7 (-2), and GATA3 (-3).


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia-Lymphoma, Adult T-Cell , Lymphoma , Adult , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia-Lymphoma, Adult T-Cell/therapy , Prognosis , Receptors, CCR7 , Retrospective Studies
19.
Cytotherapy ; 25(11): 1212-1219, 2023 11.
Article in English | MEDLINE | ID: mdl-37354150

ABSTRACT

BACKGROUND AIMS: The prognostic impact of platelet recovery after autologous hematopoietic cell transplantation (AHCT) on clinical outcomes remains to be elucidated. We aimed to clarify the impact of platelet recovery on clinical outcomes, risk factors of delayed platelet recovery and the necessary dose of CD34+ cells for prompt platelet recovery in each patient. METHODS: Using a nationwide Japanese registry database, we retrospectively analyzed clinical outcomes of 5222 patients with aggressive non-Hodgkin lymphoma (NHL) or multiple myeloma (MM). RESULTS: At a landmark of 28 days after AHCT, a delay of platelet recovery was observed in 1102 patients (21.1%). Prompt platelet recovery was significantly associated with superior overall survival (hazard ratio [HR] 0.32, P < 0.001), progression-free survival (HR 0.48, P < 0.001) and decreased risks of disease progression (HR 0.66, P < 0.001) and non-relapse/non-progression mortality (HR 0.19, P < 0.001). The adverse impacts of a delay of platelet recovery seemed to be more apparent in NHL. In addition to the dose of CD34+ cells/kg, disease status, performance status and the hematopoietic cell transplant-specific comorbidity index in both diseases were associated with platelet recovery. We then stratified the patients into three risk groups according to these factors. For the purpose of achieving 70% platelet recovery by 28 days in NHL, the low-, intermediate- and high-risk groups needed more than 2.0, 3.0 and 4.0 × 106 CD34+ cells/kg, respectively. In MM, the low-risk group needed approximately 1.5 × 106 CD34+ cells/kg, whereas the intermediate- and high-risk groups required 2.0 and 2.5 × 106 CD34+ cells/kg to achieve about 80% platelet recovery by 28 days. CONCLUSIONS: A delay of platelet recovery after AHCT was associated with inferior survival outcomes.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, Non-Hodgkin , Multiple Myeloma , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Multiple Myeloma/therapy , Retrospective Studies , Lymphoma, Non-Hodgkin/therapy , Lymphoma, Non-Hodgkin/etiology , Blood Platelets , Antigens, CD34 , Transplantation, Autologous
20.
Ann Hematol ; 102(5): 1215-1227, 2023 May.
Article in English | MEDLINE | ID: mdl-36918415

ABSTRACT

Bone marrow (BM) and granulocyte colony-stimulating factor-mobilized peripheral blood stem cells (PBSC) are used as grafts from HLA-identical-related donors for adults with myelodysplastic syndrome (MDS). To assess the impact of graft sources on post-transplant outcomes in MDS patients, we conducted a retrospective analysis of a nationwide database. A total of 247 and 280 patients underwent transplantation with BM and PBSC, respectively. The inverse probability of treatment weighting (IPTW) methods revealed that overall survival (OS) was comparable between BM and PBSC (P = .129), but PBSC transplantation was associated with worse graft-versus-host disease (GVHD)-free/relapse-free survival (GRFS) (hazard rate [HR], 1.24; 95% confidence intervals [CIs], 1.00-1.53; P = 0.049) and chronic GVHD-free and relapse-free survival (CRFS) (HR, 1.29; 95% CIs, 1.13-1.73; P = 0.002) than BM transplantation. In the propensity score matched cohort (BM, n = 216; PBSC, n = 216), no significant differences were observed in OS and relapse; 3-year OS rates were 64.7% and 60.0% (P = 0.107), while 3-year relapse rates were 27.1% and 23.5% (P = 0.255) in BM and PBSC, respectively. Three-year GRFS rates (36.6% vs. 29.2%; P = 0.006), CRFS rate (37.7% vs. 32.5%; P = 0.003), and non-relapse mortality rates (13.9% vs. 21.1%; P = 0.020) were better in BM than in PBSC. The present study showed that BM transplantation provides a comparable survival benefit with PBSC transplantation and did not identify an enhanced graft-versus-MDS effect to reduce the incidence of relapse in PBSC transplantation.


Subject(s)
Graft vs Host Disease , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Peripheral Blood Stem Cells , Adult , Humans , Bone Marrow , Retrospective Studies , Propensity Score , Transplantation, Homologous , Bone Marrow Transplantation/methods , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/therapy , Recurrence , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL