Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.163
Filter
Add more filters

Publication year range
1.
J Mol Cell Cardiol ; 189: 12-24, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401179

ABSTRACT

Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.


Subject(s)
Aortic Valve Stenosis , Cardiomegaly , Animals , Mice , Cardiomegaly/pathology , Myocytes, Cardiac/metabolism , Myocardium/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Aortic Valve Stenosis/metabolism , Mice, Knockout
2.
Circulation ; 148(6): 473-486, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37317858

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) are approved for multiple cancers but can result in ICI-associated myocarditis, an infrequent but life-threatening condition. Elevations in cardiac biomarkers, specifically troponin-I (cTnI), troponin-T (cTnT), and creatine kinase (CK), are used for diagnosis. However, the association between temporal elevations of these biomarkers with disease trajectory and outcomes has not been established. METHODS: We analyzed the diagnostic accuracy and prognostic performances of cTnI, cTnT, and CK in patients with ICI myocarditis (n=60) through 1-year follow-up in 2 cardio-oncology units (APHP Sorbonne, Paris, France and Heidelberg, Germany). A total of 1751 (1 cTnT assay type), 920 (4 cTnI assay types), and 1191 CK sampling time points were available. Major adverse cardiomyotoxic events (MACE) were defined as heart failure, ventricular arrhythmia, atrioventricular or sinus block requiring pacemaker, respiratory muscle failure requiring mechanical ventilation, and sudden cardiac death. Diagnostic performance of cTnI and cTnT was also assessed in an international ICI myocarditis registry. RESULTS: Within 72 hours of admission, cTnT, cTnI, and CK were increased compared with upper reference limits (URLs) in 56 of 57 (98%), 37 of 42 ([88%] P=0.03 versus cTnT), and 43 of 57 ([75%] P<0.001 versus cTnT), respectively. This increased rate of positivity for cTnT (93%) versus cTnI ([64%] P<0.001) on admission was confirmed in 87 independent cases from an international registry. In the Franco-German cohort, 24 of 60 (40%) patients developed ≥1 MACE (total, 52; median time to first MACE, 5 [interquartile range, 2-16] days). The highest value of cTnT:URL within the first 72 hours of admission performed best in terms of association with MACE within 90 days (area under the curve, 0.84) than CK:URL (area under the curve, 0.70). A cTnT:URL ≥32 within 72 hours of admission was the best cut-off associated with MACE within 90 days (hazard ratio, 11.1 [95% CI, 3.2-38.0]; P<0.001), after adjustment for age and sex. cTnT was increased in all patients within 72 hours of the first MACE (23 of 23 [100%]), whereas cTnI and CK values were less than the URL in 2 of 19 (11%) and 6 of 22 (27%) of patients (P<0.001), respectively. CONCLUSIONS: cTnT is associated with MACE and is sensitive for diagnosis and surveillance in patients with ICI myocarditis. A cTnT:URL ratio <32 within 72 hours of diagnosis is associated with a subgroup at low risk for MACE. Potential differences in diagnostic and prognostic performances between cTnT and cTnI as a function of the assays used deserve further evaluation in ICI myocarditis.


Subject(s)
Myocarditis , Humans , Myocarditis/chemically induced , Myocarditis/diagnosis , Immune Checkpoint Inhibitors , Biomarkers , Creatine Kinase , Prognosis , Troponin T
3.
Pflugers Arch ; 476(2): 229-242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036776

ABSTRACT

Loss-of-function variants of SCN5A, encoding the sodium channel alpha subunit Nav1.5 are associated with high phenotypic variability and multiple cardiac presentations, while underlying mechanisms are incompletely understood. Here we investigated a family with individuals affected by Brugada Syndrome (BrS) of different severity and aimed to unravel the underlying genetic and electrophysiological basis.Next-generation sequencing was used to identify the genetic variants carried by family members. The index patient, who was severely affected by arrhythmogenic BrS, carried previously uncharacterized variants of Nav1.5 (SCN5A-G1661R) and glycerol-3-phosphate dehydrogenase-1-like protein (GPD1L-A306del) in a double heterozygous conformation. Family members exclusively carrying SCN5A-G1661R showed asymptomatic Brugada ECG patterns, while another patient solely carrying GPD1L-A306del lacked any clinical phenotype.To assess functional mechanisms, Nav1.5 channels were transiently expressed in HEK-293 cells in the presence and absence of GPD1L. Whole-cell patch-clamp recordings revealed loss of sodium currents after homozygous expression of SCN5A-G1661R, and reduction of current amplitude to ~ 50% in cells transfected with equal amounts of wildtype and mutant Nav1.5. Co-expression of wildtype Nav1.5 and GPD1L showed a trend towards increased sodium current amplitudes and a hyperpolarizing shift in steady-state activation and -inactivation compared to sole SCN5A expression. Application of the GPD1L-A306del variant shifted steady-state activation to more hyperpolarized and inactivation to more depolarized potentials.In conclusion, SCN5A-G1661R produces dysfunctional channels and associates with BrS. SCN5A mediated currents are modulated by co-expression of GDP1L and this interaction is altered by mutations in both proteins. Thus, additive genetic burden may aggravate disease severity, explaining higher arrhythmogenicity in double mutation carriers.


Subject(s)
Brugada Syndrome , Humans , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Sodium/metabolism , HEK293 Cells , Mutation , Phenotype , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism
4.
Article in English | MEDLINE | ID: mdl-38819384

ABSTRACT

The EF-hand calcium (Ca2+) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CM). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single cysteine residue (C85) via reactive nitrogen species (i.e. S-nitrosylation or glutathionylation) has been proposed to modulate conformational flexibility of intrinsically disordered sequence fragments and to increase the molecule's affinity towards Ca2+. In light of the unknown biological functional consequence, we aimed to determine the impact of the C85 moiety of S100A1 as a potential redox-switch. We first uncovered that S100A1 is endogenously glutathionylated in the adult heart in vivo. To prevent glutathionylation of S100A1, we generated S100A1 variants that were unresponsive to ox-PTMs. Overexpression of wildtype (WT) and C85-deficient S100A1 protein variants in isolated CM demonstrated equal inotropic potency, as shown by equally augmented Ca2+ transient amplitudes under basal conditions and ß-adrenergic receptor (ßAR) stimulation. However, in contrast ox-PTM defective S100A1 variants failed to protect against arrhythmogenic diastolic sarcoplasmic reticulum (SR) Ca2+ waves and ryanodine receptor (RyR2) hypernitrosylation during ß-AR stimulation. Despite diastolic performance failure, C85-deficient S100A1 protein variants exerted similar Ca2+-dependent interaction with the RyR2 than WT-S100A1. Dissecting S100A1's molecular structure-function relationship, our data indicate for the first time that the conserved C85 residue potentially acts as a redox-switch that is indispensable for S100A1's antiarrhythmic but not its inotropic potency in CM. We therefore propose a model where C85's ox-PTM determines S100A1's ability to beneficially control diastolic but not systolic RyR2 activity.

5.
Clin Chem Lab Med ; 62(6): 1167-1176, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38341860

ABSTRACT

OBJECTIVES: Biomarker concentrations and their changes during acute coronary syndrome (ACS) provide clinically useful information on pathophysiological processes, e.g. myocardial necrosis, hemodynamic stress and inflammation. However, current evidence on temporal biomarker patterns early during ACS is limited, and studies investigating multiple biomarkers are lacking. METHODS: We measured concentrations of high-sensitivity cardiac troponin T (hs-cTnT) and I (hs-cTnI), NT-terminal pro-B-type natriuretic peptide, C-reactive protein, and growth-differentiation factor-15 (GDF-15) in plasma samples obtained at randomization in ACS patients from the PLATelet inhibition and patient Outcomes (PLATO) trial. Linear regressions with interaction analyses were used to investigate the associations of biomarker concentrations with the time from symptom onset and to model temporal biomarker concentration patterns. RESULTS: The study population consisted of 16,944 patients (median age 62 years; 71.3 % males) with 6,853 (40.3 %) having ST-elevation myocardial infarction (STEMI) and 10,141 (59.7 %) having non-ST-elevation ACS (NSTE-ACS). Concentrations of all biomarkers were associated with time from symptom onset (pinteraction<0.001), apart for GDF-15 (pinteraction=0.092). Concentration increases were more pronounced in STEMI compared to NSTE-ACS. Temporal biomarker patterns for hs-cTnT and hs-cTnI were different depending on sex whereas biomarker patterns for the other biomarkers were similar in cohorts defined by age and sex. CONCLUSIONS: Temporal concentration patterns differ for various biomarkers early during ACS, reflecting the variability in the activation and duration of different pathophysiological processes, and the amount of injured myocardium. Our data emphasize that the time elapsed from symptom onset should be considered for the interpretation of biomarker results in ACS.


Subject(s)
Acute Coronary Syndrome , Biomarkers , Growth Differentiation Factor 15 , Troponin T , Humans , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/diagnosis , Biomarkers/blood , Male , Female , Middle Aged , Aged , Troponin T/blood , Growth Differentiation Factor 15/blood , Troponin I/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Natriuretic Peptide, Brain/blood , Time Factors , Peptide Fragments/blood
6.
Echocardiography ; 41(2): e15786, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400544

ABSTRACT

BACKGROUND: High-altitude pulmonary hypertension (HAPH) has a prevalence of approximately 10%. Changes in cardiac morphology and function at high altitude, compared to a population that does not develop HAPH are scarce. METHODS: Four hundred twenty-one subjects were screened in a hypoxic chamber inspiring a FiO2  = 12% for 2 h. In 33 subjects an exaggerated increase in systolic pulmonary artery pressure (sPAP) could be confirmed in two independent measurements. Twenty nine of these, and further 24 matched subjects without sPAP increase were examined at 4559 m by Doppler echocardiography including global longitudinal strain (GLS). RESULTS: SPAP increase was higher in HAPH subjects (∆ = 10.2 vs. ∆ = 32.0 mm Hg, p < .001). LV eccentricity index (∆ = .15 vs. ∆ = .31, p = .009) increased more in HAPH. D-shaped LV (0 [0%] vs. 30 [93.8%], p = .00001) could be observed only in the HAPH group, and only in those with a sPAP ≥50 mm Hg. LV-EF (∆ = 4.5 vs. ∆ = 6.7%, p = .24) increased in both groups. LV-GLS (∆ = 1.2 vs. ∆ = 1.1 -%, p = .60) increased slightly. RV end-diastolic (∆ = 2.20 vs. ∆ = 2.7 cm2 , p = .36) and end-systolic area (∆ = 2.1 vs. ∆ = 2.7 cm2 , p = .39), as well as RA end-systolic area index (∆ = -.9 vs. ∆ = .3 cm2 /m2 , p = .01) increased, RV-FAC (∆ = -2.9 vs. ∆ = -4.7%, p = .43) decreased, this was more pronounced in HAPH, RV-GLS (∆ = 1.6 vs. ∆ = -.7 -%, p = .17) showed marginal changes. CONCLUSIONS: LV and LA dimensions decrease and left ventricular function increases at high-altitude in subjects with and without HAPH. RV and RA dimensions increase, and RV longitudinal strain increases or remains unchanged in subjects with HAPH. Changes are negligible in those without HAPH.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/etiology , Altitude , Altitude Sickness/complications , Ventricular Function, Left
7.
Am J Physiol Heart Circ Physiol ; 325(2): H311-H320, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37294892

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of protein synthesis that senses and responds to a variety of stimuli to coordinate cellular metabolism with environmental conditions. To ensure that protein synthesis is inhibited during unfavorable conditions, translation is directly coupled to the sensing of cellular protein homeostasis. Thus, translation is attenuated during endoplasmic reticulum (ER) stress by direct inhibition of the mTORC1 pathway. However, residual mTORC1 activity is maintained during prolonged ER stress, which is thought to be involved in translational reprogramming and adaption to ER stress. By analyzing the dynamics of mTORC1 regulation during ER stress, we unexpectedly found that mTORC1 is transiently activated in cardiomyocytes within minutes at the onset of ER stress before being inhibited during chronic ER stress. This dynamic regulation of mTORC1 appears to be mediated, at least in part, by ATF6, as its activation was sufficient to induce the biphasic control of mTORC1. We further showed that protein synthesis remains dependent on mTORC1 throughout the ER stress response and that mTORC1 activity is essential for posttranscriptional induction of several unfolded protein response genes. Pharmacological inhibition of mTORC1 increased cell death during ER stress, indicating that the mTORC1 pathway serves adaptive functions during ER stress in cardiomyocytes potentially by controlling the expression of protective unfolded protein response genes.NEW & NOTEWORTHY Cells coordinate translation rates with protein quality control to ensure that protein synthesis is initiated primarily when proper protein folding can be achieved. Long-term activity of the unfolded protein response is therefore associated with an inhibition of mTORC1, a central regulator of protein synthesis. Here, we found that mTORC1 is transiently activated early in response to ER stress before it is inhibited. Importantly, partial mTORC1 activity remained essential for the upregulation of adaptive unfolded protein response genes and cell survival in response to ER stress. Our data reveal a complex regulation of mTORC1 during ER stress and its involvement in the adaptive unfolded protein response.


Subject(s)
Myocytes, Cardiac , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Myocytes, Cardiac/metabolism , Endoplasmic Reticulum Stress , Unfolded Protein Response , Cell Death , Proteins/metabolism
8.
Basic Res Cardiol ; 118(1): 25, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37378715

ABSTRACT

RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.


Subject(s)
Heart Failure , TOR Serine-Threonine Kinases , Cardiomegaly/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Mice , Rats
9.
EMBO Rep ; 22(12): e52170, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34605609

ABSTRACT

The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling.


Subject(s)
Myocytes, Cardiac , Ventricular Remodeling , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Proteins , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , Transcription Factors , Up-Regulation , Ventricular Remodeling/genetics
10.
J Mol Cell Cardiol ; 162: 119-129, 2022 01.
Article in English | MEDLINE | ID: mdl-34492228

ABSTRACT

Histone deacetylase 4 (HDAC4) is a member of class IIa histone deacetylases (class IIa HDACs) and is believed to possess a low intrinsic deacetylase activity. However, HDAC4 sufficiently represses distinct transcription factors (TFs) such as the myocyte enhancer factor 2 (MEF2). Transcriptional repression by HDAC4 has been suggested to be mediated by the recruitment of other chromatin-modifying enzymes, such as methyltransferases or class I histone deacetylases. However, this concept has not been investigated by an unbiased approach. Therefore, we studied the histone modifications H3K4me3, H3K9ac, H3K27ac, H3K9me2 and H3K27me3 in a genome-wide approach using HDAC4-deficient cardiomyocytes. We identified a general epigenetic shift from a 'repressive' to an 'active' status, characterized by an increase of H3K4me3, H3K9ac and H3K27ac and a decrease of H3K9me2 and H3K27me3. In HDAC4-deficient cardiomyocytes, MEF2 binding sites were considerably overrepresented in upregulated promoter regions of H3K9ac and H3K4me3. For example, we identified the promoter of Adprhl1 as a new genomic target of HDAC4 and MEF2. Overexpression of HDAC4 in cardiomyocytes was able to repress the transcription of the Adprhl1 promoter in the presence of the methyltransferase SUV39H1. On a genome-wide level, the decrease of H3K9 methylation did not change baseline expression but was associated with exercise-induced gene expression. We conclude that HDAC4, on the one hand, associates with activating histone modifications, such as H3K4me3 and H3K9ac. A functional consequence, on the other hand, requires an indirect regulation of H3K9me2. H3K9 hypomethylation in HDAC4 target genes ('first hit') plus a 'second hit' (e.g., exercise) determines the transcriptional response.


Subject(s)
Epigenetic Repression , Histone Deacetylases , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Methylation , Protein Processing, Post-Translational
11.
Immunology ; 165(2): 158-170, 2022 02.
Article in English | MEDLINE | ID: mdl-34606637

ABSTRACT

Treatment of myocarditis is often limited to symptomatic treatment due to unknown pathomechanisms. In order to identify new therapeutic approaches, the contribution of locked nucleic acid antisense oligonucleotides (LNA ASOs) in autoimmune myocarditis was investigated. Hence, A/J mice were immunized with cardiac troponin I (TnI) to induce experimental autoimmune myocarditis (EAM) and treated with LNA ASOs. The results showed an unexpected anti-inflammatory effect for one administered LNA ASO MB_1114 by reducing cardiac inflammation and fibrosis. The target sequence of MB_1114 was identified as lactate dehydrogenase B (mLDHB). For further analysis, mice received mLdhb-specific GapmeR during induction of EAM. Here, mice receiving the mLdhb-specific GapmeR showed increased protein levels of cardiac mLDHB and a reduced cardiac inflammation and fibrosis. The effect of increased cardiac mLDHB protein level was associated with a downregulation of genes of reactive oxygen species (ROS)-associated proteins, indicating a reduction in ROS. Here, the suppression of murine pro-apoptotic Bcl-2-associated X protein (mBax) was also observed. In our study, an unexpected anti-inflammatory effect of LNA ASO MB_1114 and mLdhb-specific GapmeR during induction of EAM could be demonstrated in vivo. This effect was associated with increased protein levels of cardiac mLDHB, mBax suppression and reduced ROS activation. Thus, LDHB and LNA ASOs may be considered as a promising target for directed therapy of myocarditis. Nevertheless, further investigations are necessary to clarify the mechanism of action of anti-inflammatory LDHB-triggered effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , Myocarditis/etiology , Myocarditis/metabolism , Oligonucleotides/pharmacology , Animals , Autoimmune Diseases/diagnosis , Autoimmune Diseases/drug therapy , Biomarkers , Biopsy , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Enzyme Inhibitors/pharmacology , Female , Immunohistochemistry , Inflammation Mediators/metabolism , Isoenzymes/antagonists & inhibitors , Mice , Myocarditis/diagnosis , Myocarditis/drug therapy , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Reactive Oxygen Species/metabolism
12.
N Engl J Med ; 381(16): 1524-1534, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31475799

ABSTRACT

BACKGROUND: The relative merits of ticagrelor as compared with prasugrel in patients with acute coronary syndromes for whom invasive evaluation is planned are uncertain. METHODS: In this multicenter, randomized, open-label trial, we randomly assigned patients who presented with acute coronary syndromes and for whom invasive evaluation was planned to receive either ticagrelor or prasugrel. The primary end point was the composite of death, myocardial infarction, or stroke at 1 year. A major secondary end point (the safety end point) was bleeding. RESULTS: A total of 4018 patients underwent randomization. A primary end-point event occurred in 184 of 2012 patients (9.3%) in the ticagrelor group and in 137 of 2006 patients (6.9%) in the prasugrel group (hazard ratio, 1.36; 95% confidence interval [CI], 1.09 to 1.70; P = 0.006). The respective incidences of the individual components of the primary end point in the ticagrelor group and the prasugrel group were as follows: death, 4.5% and 3.7%; myocardial infarction, 4.8% and 3.0%; and stroke, 1.1% and 1.0%. Definite or probable stent thrombosis occurred in 1.3% of patients assigned to ticagrelor and 1.0% of patients assigned to prasugrel, and definite stent thrombosis occurred in 1.1% and 0.6%, respectively. Major bleeding (as defined by the Bleeding Academic Research Consortium scale) was observed in 5.4% of patients in the ticagrelor group and in 4.8% of patients in the prasugrel group (hazard ratio, 1.12; 95% CI, 0.83 to 1.51; P = 0.46). CONCLUSIONS: Among patients who presented with acute coronary syndromes with or without ST-segment elevation, the incidence of death, myocardial infarction, or stroke was significantly lower among those who received prasugrel than among those who received ticagrelor, and the incidence of major bleeding was not significantly different between the two groups. (Funded by the German Center for Cardiovascular Research and Deutsches Herzzentrum München; ISAR-REACT 5 ClinicalTrials.gov number, NCT01944800.).


Subject(s)
Acute Coronary Syndrome/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Prasugrel Hydrochloride/therapeutic use , Purinergic P2Y Receptor Antagonists/therapeutic use , Ticagrelor/therapeutic use , Acute Coronary Syndrome/mortality , Acute Coronary Syndrome/therapy , Aged , Coronary Thrombosis/epidemiology , Female , Hemorrhage/chemically induced , Humans , Incidence , Kaplan-Meier Estimate , Male , Middle Aged , Myocardial Infarction/epidemiology , Myocardial Infarction/prevention & control , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors/adverse effects , Prasugrel Hydrochloride/adverse effects , Purinergic P2Y Receptor Antagonists/adverse effects , Stents , Stroke/epidemiology , Stroke/prevention & control , Ticagrelor/adverse effects
13.
N Engl J Med ; 380(26): 2529-2540, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31242362

ABSTRACT

BACKGROUND: Data regarding high-sensitivity troponin concentrations in patients presenting to the emergency department with symptoms suggestive of myocardial infarction may be useful in determining the probability of myocardial infarction and subsequent 30-day outcomes. METHODS: In 15 international cohorts of patients presenting to the emergency department with symptoms suggestive of myocardial infarction, we determined the concentrations of high-sensitivity troponin I or high-sensitivity troponin T at presentation and after early or late serial sampling. The diagnostic and prognostic performance of multiple high-sensitivity troponin cutoff combinations was assessed with the use of a derivation-validation design. A risk-assessment tool that was based on these data was developed to estimate the risk of index myocardial infarction and of subsequent myocardial infarction or death at 30 days. RESULTS: Among 22,651 patients (9604 in the derivation data set and 13,047 in the validation data set), the prevalence of myocardial infarction was 15.3%. Lower high-sensitivity troponin concentrations at presentation and smaller absolute changes during serial sampling were associated with a lower likelihood of myocardial infarction and a lower short-term risk of cardiovascular events. For example, high-sensitivity troponin I concentrations of less than 6 ng per liter and an absolute change of less than 4 ng per liter after 45 to 120 minutes (early serial sampling) resulted in a negative predictive value of 99.5% for myocardial infarction, with an associated 30-day risk of subsequent myocardial infarction or death of 0.2%; a total of 56.5% of the patients would be classified as being at low risk. These findings were confirmed in an external validation data set. CONCLUSIONS: A risk-assessment tool, which we developed to integrate the high-sensitivity troponin I or troponin T concentration at emergency department presentation, its dynamic change during serial sampling, and the time between the obtaining of samples, was used to estimate the probability of myocardial infarction on emergency department presentation and 30-day outcomes. (Funded by the German Center for Cardiovascular Research [DZHK]; ClinicalTrials.gov numbers, NCT00470587, NCT02355457, NCT01852123, NCT01994577, and NCT03227159; and Australian New Zealand Clinical Trials Registry numbers, ACTRN12611001069943, ACTRN12610000766011, ACTRN12613000745741, and ACTRN12611000206921.).


Subject(s)
Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Risk Assessment/methods , Troponin/blood , Adult , Aged , Biomarkers/blood , Cohort Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Prognosis , Sensitivity and Specificity , Troponin I/blood
14.
Circ Res ; 127(5): 631-646, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32418505

ABSTRACT

RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.


Subject(s)
Cardiomegaly, Exercise-Induced , Hypertrophy, Left Ventricular/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Cell Communication , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/pathology , Rats , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcriptome
15.
J Immunol ; 205(8): 2276-2286, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32938726

ABSTRACT

The number and activity of T cell subsets in the atherosclerotic plaques are critical for the prognosis of patients with acute coronary syndrome. ß2 Integrin activation is pivotal for T cell recruitment and correlates with future cardiac events. Despite this knowledge, differential regulation of adhesiveness in T cell subsets has not been explored yet. In this study, we show that in human T cells, SDF-1α-mediated ß2 integrin activation is driven by a, so far, not-described reactive oxidative species (ROS)-regulated calcium influx. Furthermore, we show that CD4+CD28null T cells represent a highly reactive subset showing 25-fold stronger ß2 integrin activation upon SDF-1α stimulation compared with CD28+ T cells. Interestingly, ROS-dependent Ca release was much more prevalent in the pathogenetically pivotal CD28null subset compared with the CD28+ T cells, whereas the established mediators of the classical pathways for ß2 integrin activation (PKC, PI3K, and PLC) were similarly activated in both T cell subsets. Thus, interference with the calcium flux attenuates spontaneous adhesion of CD28null T cells from acute coronary syndrome patients, and calcium ionophores abolished the observed differences in the adhesion properties between CD28+ and CD28null T cells. Likewise, the adhesion of these T cell subsets was indistinguishable in the presence of exogenous ROS/H2O2 Together, these data provide a molecular explanation of the role of ROS in pathogenesis of plaque destabilization.


Subject(s)
Acute Coronary Syndrome/immunology , CD18 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Calcium Signaling/immunology , Reactive Oxygen Species/immunology , Acute Coronary Syndrome/pathology , CD28 Antigens/immunology , CD4-Positive T-Lymphocytes/pathology , Chemokine CXCL12/immunology , Female , Humans , Male
16.
Mol Ther ; 29(8): 2499-2513, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33839322

ABSTRACT

Recurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes. We therefore hypothesized that ventricular RXFP1 expression might exert potential therapeutic effects in an in vivo model of cardiac dysfunction. Thus, mice were exposed to pressure overload by transverse aortic constriction and treated with AAV9 to ectopically express RXFP1. To activate RXFP1 signaling, RLN was supplemented subcutaneously. Ventricular RXFP1 expression was well tolerated. Additional RLN administration not only abrogated HF progression but restored left ventricular systolic function. In accordance, upregulation of fetal genes and pathological remodeling markers were significantly reduced. In vitro, RLN stimulation of RXFP1-expressing cardiomyocytes induced downstream signaling, resulting in protein kinase A (PKA)-specific phosphorylation of phospholamban (PLB), which was distinguishable from ß-adrenergic activation. PLB phosphorylation corresponded to increased calcium amplitude and contractility. In conclusion, our results demonstrate that ligand-activated cardiac RXFP1 gene therapy represents a therapeutic approach to attenuate HF with the potential to adjust therapy by exogenous RLN supplementation.


Subject(s)
Genetic Therapy/methods , Heart Failure/therapy , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Relaxin/administration & dosage , Animals , Calcium-Binding Proteins/metabolism , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors/administration & dosage , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Injections, Subcutaneous , Ligands , Male , Mice , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Treatment Outcome , Ventricular Function
17.
BMC Med Imaging ; 22(1): 159, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064332

ABSTRACT

BACKGROUND: Myocardial strain imaging has gained importance in cardiac magnetic resonance (CMR) imaging in recent years as an even more sensitive marker of early left ventricular dysfunction than left-ventricular ejection fraction (LVEF). fSENC (fast strain encoded imaging) and FT (feature tracking) both allow for reproducible assessment of myocardial strain. However, left-ventricular long axis strain (LVLAS) might enable an equally sensitive measurement of myocardial deformation as global longitudinal or circumferential strain in a more rapid and simple fashion. METHODS: In this study we compared the diagnostic performance of fSENC, FT and LVLAS for identification of cardiac pathology (ACS, cardiac-non-ACS) in patients presenting with chest pain (initial hscTnT 5-52 ng/l). Patients were prospectively recruited from the chest pain unit in Heidelberg. The CMR scan was performed within 1 h after patient presentation. Analysis of LVLAS was compared to the GLS and GCS as measured by fSENC and FT. RESULTS: In total 40 patients were recruited (ACS n = 6, cardiac-non-ACS n = 6, non-cardiac n = 28). LVLAS was comparable to fSENC for differentiation between healthy myocardium and myocardial dysfunction (GLS-fSENC AUC: 0.882; GCS-fSENC AUC: 0.899; LVLAS AUC: 0.771; GLS-FT AUC: 0.740; GCS-FT: 0.688), while FT-derived strain did not allow for differentiation between ACS and non-cardiac patients. There was significant variability between the three techniques. Intra- and inter-observer variability (OV) was excellent for fSENC and FT, while for LVLAS the agreement was lower and levels of variability higher (intra-OV: Pearson > 0.7, ICC > 0.8; inter-OV: Pearson > 0.65, ICC > 0.8; CoV > 25%). CONCLUSIONS: While reproducibility was excellent for both FT and fSENC, it was only fSENC and the LVLAS which allowed for significant identification of myocardial dysfunction, even before LVEF, and therefore might be used as rapid supporting parameters for assessment of left-ventricular function.


Subject(s)
Cardiomyopathies , Ventricular Function, Left , Chest Pain/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Predictive Value of Tests , Reproducibility of Results , Stroke Volume
18.
Vasa ; 51(4): 256-262, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35604329

ABSTRACT

Background: The search for an optimal interventional treatment strategy in infrapopliteal peripheral artery disease remains in the focus of interest. Whether drug-coated balloons (DCB) might enhance interventional outcomes after crural interventions is a matter of debate, as studies yielded conflicting results on DCB safety and efficacy. Patients and methods: We analyzed a retrospective cohort of 75 infrapopliteal DCB interventions performed at our institution in 68 patients with peripheral artery disease in Rutherford category 3 to 6. Results: Despite a high rate of long complex lesions and multi-vessel disease, freedom from clinically driven target lesions revascularization (TLR) after 365 days was 68%. After six months, healing or significant improvement of the ischemic ulcer was observed in 78% of cases. Accordingly, freedom from major amputation and death after 365 days was 82%. Freedom from major amputation and death was 76.2% of cases in patients with diabetes mellitus as opposed to 91.5% in patients without diabetes mellitus (p=0.049). Conclusions: With this real-world analysis we would like to contribute to the ongoing discussion on the benefit and safety of DCB treatment in below-the-knee interventions.


Subject(s)
Angioplasty, Balloon , Cardiovascular Agents , Diabetes Mellitus , Peripheral Arterial Disease , Angioplasty, Balloon/adverse effects , Cardiovascular Agents/adverse effects , Coated Materials, Biocompatible , Femoral Artery , Humans , Ischemia/diagnostic imaging , Ischemia/therapy , Limb Salvage , Peripheral Arterial Disease/surgery , Peripheral Arterial Disease/therapy , Popliteal Artery/diagnostic imaging , Popliteal Artery/surgery , Retrospective Studies , Time Factors , Treatment Outcome , Vascular Patency
19.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682624

ABSTRACT

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Echocardiography , Heart Failure/metabolism , Hypertrophy, Left Ventricular/pathology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Remodeling
20.
Internist (Berl) ; 63(4): 448-452, 2022 Apr.
Article in German | MEDLINE | ID: mdl-35129621

ABSTRACT

BACKGROUND: Atrial septal defects (ASD) following endovascular mitral valve clipping are potentially hemodynamically relevant complications. Immediate closure with an occluder can represent a safe and effective treatment. An 81-year-old female patient suffering from severe dyspnea due to previously known severe mitral valve regurgitation was scheduled for elective mitral valve clipping. The clip was successfully implanted. Removal of the transseptal cannula resulted in a sudden drop in oxygen saturation and systolic blood pressure as well as an immediate increase in central venous pressure. An iatrogenic left-right shunt was observed at the atrial level with a relevant shunt volume. Immediate closure using an atrial septal occluder successfully restored the oxygen saturation and hemodynamic parameters. CONCLUSION: An increase in central venous pressure, reduction of systolic blood pressure or oxygen saturation after withdrawal of the transseptal cannula during mitral valve clipping should always be further investigated regarding a possible ASD.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve , Aged, 80 and over , Blood Pressure , Cardiac Catheterization , Central Venous Pressure , Female , Humans , Mitral Valve/surgery , Mitral Valve Insufficiency/diagnosis , Mitral Valve Insufficiency/surgery , Oxygen Saturation
SELECTION OF CITATIONS
SEARCH DETAIL