Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain Behav Immun ; 118: 1-21, 2024 May.
Article in English | MEDLINE | ID: mdl-38360376

ABSTRACT

Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and ß. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNß (IFNßKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNß but in a sex-dependent fashion. Notably, in cerebral cortex of IFNßKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNßKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNß-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNß-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNßKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNß on multiple components with more pronounced changes in IFNßKO females. In contrast, the effects of IFNßKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNß impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNß plays a vital role in maintaining neuronal homeostasis and memory function.


Subject(s)
HIV Infections , HIV-1 , Interferon-beta , Animals , Female , Male , Mice , Brain/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Interferon-beta/metabolism , Mice, Transgenic
2.
Brain Behav Immun ; 118: 149-166, 2024 May.
Article in English | MEDLINE | ID: mdl-38423397

ABSTRACT

Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.


Subject(s)
Cysteine , HIV Infections , HIV-1 , Mice , Humans , Animals , HIV-1/metabolism , Macrophages/metabolism , Leukotrienes/metabolism , Neurons/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Mice, Transgenic , HIV Infections/metabolism
3.
Res Sq ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38313297

ABSTRACT

Background: Little is known about the pathogenesis of Bipolar Disorder, and even less is known about the genetic differences between its subtypes. Bipolar Disorder is classified into different subtypes, which present different symptoms and lifetime courses. While genetic studies have been conducted in Bipolar Disorder, most examined the gene expression of only Bipolar Disorder Type 1. Studies that include Bipolar Disorder Type 1 and Bipolar Disorder Type 2 often fail to differentiate them into separate conditions. Few large transcriptomic meta-analyses in Bipolar Disorder have been conducted to identify genetic pathways. Thus, using publicly available data sets we aim here to uncover significant differential gene expression that allows distinguishing Type 1 and Type 2 Bipolar Disorders, as well as find patterns in Bipolar Disorder as a whole. Methods: We analyze 17 different gene expression data sets from different tissue in Bipolar Disorder using GEO2R and manual analysis, of which 15 contained significant differential gene expression results. We use STRING and Cytoscape to examine Gene Ontology to find significantly affected genetic pathways. We identify hub genes using cytoHubba, a plugin in Cytoscape. We find genes common to data sets of the same material or subtype. Results: 12 out of 15 data sets are enriched for immune system and RNA related pathways. 9 out of 15 data sets are enriched for neurocognitive and metal ion related GO terms. Analysis of Bipolar Disorder Type 1 vs Bipolar Disorder Type 2 revealed most differentially expressed genes were related to immune function, especially cytokines. Terms related to synaptic signaling and neurotransmitter secretion were found in down-regulated GO terms while terms related to neuron apoptosis and death were up-regulated. We identify the gene SNCA as a potential biomarker for overall Bipolar Disorder diagnosis due to its prevalence in our data sets. Conclusions: The immune system and RNA related pathways are significantly enriched across the Bipolar Disorder data sets. The role of these pathways is likely more critically important to the function of Bipolar Disorder than currently understood. Further studies should clearly label the subtype of Bipolar Disorder used in their research and more effort needs to be undertaken to collect samples from Cyclothymic Disorder and Bipolar Disorder Type 2.

SELECTION OF CITATIONS
SEARCH DETAIL