Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36868220

ABSTRACT

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Subject(s)
Euphausiacea , Genome , Animals , Circadian Clocks/genetics , Ecosystem , Euphausiacea/genetics , Euphausiacea/physiology , Genomics , Sequence Analysis, DNA , DNA Transposable Elements , Biological Evolution , Adaptation, Physiological
2.
Proc Biol Sci ; 289(1969): 20212361, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193400

ABSTRACT

Antarctic krill swarms are one of the largest known animal aggregations, and yet, despite being the keystone species of the Southern Ocean, little is known about how swarms are formed and maintained. Understanding the local interactions between individuals that provide the basis for these swarms is fundamental to knowing how swarms arise in nature, and what potential factors might lead to their breakdown. Here, we analysed the trajectories of captive, wild-caught krill in 3D to determine individual-level interaction rules and quantify patterns of information flow. Our results demonstrate that krill align with near neighbours and that they regulate both their direction and speed relative to the positions of groupmates. These results suggest that social factors are vital to the formation and maintenance of swarms. Furthermore, krill operate a novel form of collective organization, with measures of information flow and individual movement adjustments expressed most strongly in the vertical dimension, a finding not seen in other swarming species. This research represents a vital step in understanding the fundamentally important swarming behaviour of krill.


Subject(s)
Euphausiacea , Animals , Antarctic Regions , Euphausiacea/physiology
3.
Environ Sci Technol ; 52(5): 3195-3201, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29397707

ABSTRACT

The discarding of plastic products has led to the ubiquitous occurrence of microplastic particles in the marine environment. The uptake and depuration kinetics of ingested microplastics for many marine species still remain unknown despite its importance for understanding bioaccumulation potential to higher trophic level consumers. In this study, Antarctic krill ( Euphausia superba) were exposed to polyethylene microplastics to quantify acute toxicity and ingestion kinetics, providing insight into the bioaccumulation potential of microplastics at the first-order consumer level. In the 10 day acute toxicity assay, no mortality or dose-dependent weight loss occurred in exposed krill, at any of the exposure concentrations (0, 10, 20, 40, or 80% plastic diet). Krill exposed to a 20% plastic diet for 24 h displayed fast uptake (22 ng mg-1 h-1) and depuration (0.22 h-1) rates, but plastic uptake did not reach steady state. Efficient elimination also resulted in no bioaccumulation over an extended 25 day assay, with most individuals completely eliminating their microplastic burden in less than 5 days post exposure. Our results support recent findings of limited acute toxicity of ingested microplastics at this trophic level, and suggest sublethal chronic end points should be the focus of further ecotoxicological investigation.


Subject(s)
Euphausiacea , Water Pollutants, Chemical , Animals , Antarctic Regions , Kinetics , Plastics
4.
Mol Ecol ; 24(19): 4943-59, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26340718

ABSTRACT

Antarctic krill (Euphausia superba; hereafter krill) are an incredibly abundant pelagic crustacean which has a wide, but patchy, distribution in the Southern Ocean. Several studies have examined the potential for population genetic structuring in krill, but DNA-based analyses have focused on a limited number of markers and have covered only part of their circum-Antarctic range. We used mitochondrial DNA and restriction site-associated DNA sequencing (RAD-seq) to investigate genetic differences between krill from five sites, including two from East Antarctica. Our mtDNA results show no discernible genetic structuring between sites separated by thousands of kilometres, which is consistent with previous studies. Using standard RAD-seq methodology, we obtained over a billion sequences from >140 krill, and thousands of variable nucleotides were identified at hundreds of loci. However, downstream analysis found that markers with sufficient coverage were primarily from multicopy genomic regions. Careful examination of these data highlights the complexity of the RAD-seq approach in organisms with very large genomes. To characterize the multicopy markers, we recorded sequence counts from variable nucleotide sites rather than the derived genotypes; we also examined a small number of manually curated genotypes. Although these analyses effectively fingerprinted individuals, and uncovered a minor laboratory batch effect, no population structuring was observed. Overall, our results are consistent with panmixia of krill throughout their distribution. This result may indicate ongoing gene flow. However, krill's enormous population size creates substantial panmictic inertia, so genetic differentiation may not occur on an ecologically relevant timescale even if demographically separate populations exist.


Subject(s)
Euphausiacea/genetics , Genetics, Population , Metagenomics , Animals , Antarctic Regions , DNA, Mitochondrial/genetics , Genotype , Haplotypes , Polymorphism, Single Nucleotide , Population Density , Sequence Analysis, DNA
5.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24802817

ABSTRACT

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Subject(s)
Aquatic Organisms , Climate Change , Ice Cover , Antarctic Regions , Biota , Ecosystem , Oceans and Seas , Water Movements , Wind
6.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701928

ABSTRACT

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Subject(s)
Diet , Euphausiacea , Humpback Whale , Animals , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Antarctic Regions , Fatty Acids/analysis , Climate Change
7.
Ecotoxicol Environ Saf ; 75(1): 163-70, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21959188

ABSTRACT

Persistent organic pollutants (POPs) have been frequently measured throughout the Southern Ocean food web for which little information is available to assess the potential risks of POP exposure. The current study evaluated the toxicological sensitivity of a key Southern Ocean species, Antarctic krill, to aqueous exposure of p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE). Behavioural endpoints were used as indicators of sublethal toxicity. Immediate behavioural responses (partial immobility and tail flicking) most likely reflect neurotoxicity, while the p,p'-DDE body residue causing a median level of sublethal toxicity in Antarctic krill following 96h exposure (IEC50(sublethal toxicity)=3.9±0.21mmol/kg lipid weight) is comparable to those known to cause sublethal narcosis in temperate aquatic species. Critical body residues (CBRs) were more reproducible across tests than effective seawater concentrations. These findings support the concept of the CBR approach, that effective tissue residues are comparable across species and geographical ranges despite differences in environmental factors.


Subject(s)
Behavior, Animal/drug effects , Dichlorodiphenyl Dichloroethylene/toxicity , Euphausiacea/drug effects , Water Pollutants, Chemical/toxicity , Animals , Antarctic Regions , Euphausiacea/physiology , Food Chain , Oceans and Seas , Seawater/chemistry
8.
Science ; 378(6617): 230, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264805

ABSTRACT

Next week, the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) convenes in Hobart, Tasmania, to examine the state of marine life in the Southern Ocean. As part of the Antarctic Treaty System, this convention entered into force in 1982, and its focus on the region's environmental integrity has never been more important, given the increasing effects of climate change and commercial fishing. An important focus over the past 40 years has been Antarctic krill, Euphausia superba (hereafter krill), a keystone species that helps to hold this marine ecosystem together. Climate and fishing stresses should prompt the CCAMLR to address whether management of krill fishing is at a level that protects the Southern Ocean from losing its overall balance of marine life and the oceanic processes that regulate global climate.


Subject(s)
Conservation of Natural Resources , Ecosystem , Euphausiacea , Animals , Antarctic Regions , Climate Change , Euphausiacea/physiology , Oceans and Seas
9.
PLoS One ; 17(8): e0271078, 2022.
Article in English | MEDLINE | ID: mdl-36001623

ABSTRACT

Regular monitoring is an important component of the successful management of pelagic animals of interest to commercial fisheries. Here we provide a biomass estimate for Antarctic krill (Euphausia superba) in the eastern sector of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Division 58.4.2 (55°E to 80°E; area = 775,732 km2) using data collected during an acoustic-trawl survey carried out in February and March 2021. Using acoustic data collected in day-time and trawl data, areal biomass density was estimated as 8.3 gm-2 giving a total areal krill biomass of 6.48 million tonnes, with a 28.9% coefficient of variation (CV). The inaccessibility of the East Antarctic makes fisheries-independent surveys of Antarctic krill expensive and time consuming, so we also assessed the efficacy of extrapolating smaller surveys to a wider area. During the large-scale survey a smaller scale survey (centre coordinates -66.28°S 63.35°E, area = 4,902 km2) was conducted. We examine how representative krill densities from the small-scale (Mawson box) survey were over a latitudinal range by comparing krill densities from the large-scale survey split into latitudinal bands. We found the small scale survey provided a good representation of the statistical distribution of krill densities within its latitudinal band (KS-test, D = 0.048, p-value = 0.98), as well as mean density (t-test p-value = 0.44), but not outside of the band. We recommend further in situ testing of this approach.


Subject(s)
Euphausiacea , Animals , Antarctic Regions , Biomass , Fisheries , Seafood
10.
J Exp Biol ; 214(Pt 11): 1845-56, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21562171

ABSTRACT

Krill aggregations vary in size, krill density and uniformity depending on the species of krill. These aggregations may be structured to allow individuals to sense the hydrodynamic cues of neighboring krill or to avoid the flow fields of neighboring krill, which may increase drag forces on an individual krill. To determine the strength and location of the flow disturbance generated by krill, we used infrared particle image velocimetry measurements to analyze the flow field of free-swimming solitary specimens (Euphausia superba and Euphausia pacifica) and small, coordinated groups of three to six E. superba. Euphausia pacifica individuals possessed shorter body lengths, steeper body orientations relative to horizontal, slower swimming speeds and faster pleopod beat frequencies compared with E. superba. The downward-directed flow produced by E. pacifica has a smaller maximum velocity and smaller horizontal extent of the flow pattern compared with the flow produced by E. superba, which suggests that the flow disturbance is less persistent as a potential hydrodynamic cue for E. pacifica. Time record analysis reveals that the hydrodynamic disturbance is very weak beyond two body lengths for E. pacifica, whereas the hydrodynamic disturbance is observable above background level at four body lengths for E. superba. Because the nearest neighbor separation distance of E. superba within a school is less than two body lengths, hydrodynamic disturbances are a viable cue for intraspecies communication. The orientation of the position of the nearest neighbor is not coincident with the orientation of the flow disturbance, however, which indicates that E. superba are avoiding the region of strongest flow.


Subject(s)
Euphausiacea/physiology , Animals , Biomechanical Phenomena , Hydrodynamics , Swimming/physiology
11.
Biol Lett ; 7(2): 288-91, 2011 Apr 23.
Article in English | MEDLINE | ID: mdl-20943680

ABSTRACT

Antarctic krill embryos and larvae were experimentally exposed to 380 (control), 1000 and 2000 µatm pCO2 in order to assess the possible impact of ocean acidification on early development of krill. No significant effects were detected on embryonic development or larval behaviour at 1000 µatm pCO2; however, at 2000 µatm pCO2 development was disrupted before gastrulation in 90 per cent of embryos, and no larvae hatched successfully. Our model projections demonstrated that Southern Ocean sea water pCO2 could rise up to 1400 µatm in krill's depth range under the IPCC IS92a scenario by the year 2100 (atmospheric pCO2 788 µatm). These results point out the urgent need for understanding the pCO2-response relationship for krill developmental and later stages, in order to predict the possible fate of this key species in the Southern Ocean.


Subject(s)
Acclimatization , Euphausiacea/physiology , Seawater/chemistry , Animals , Antarctic Regions , Carbon Dioxide/chemistry , Cold Temperature , Embryonic Development , Euphausiacea/embryology , Euphausiacea/growth & development , Hydrogen-Ion Concentration , Larva/growth & development , Larva/physiology , Solubility
12.
Ecol Evol ; 11(2): 1023-1036, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33520184

ABSTRACT

Detritivores need to upgrade their food to increase its nutritional value. One method is to fragment detritus promoting the colonization of nutrient-rich microbes, which consumers then ingest along with the detritus; so-called microbial gardening. Observations and numerical models of the detritus-dominated ocean mesopelagic zone have suggested microbial gardening by zooplankton is a fundamental process in the ocean carbon cycle leading to increased respiration of carbon-rich detritus. However, no experimental evidence exists to demonstrate that microbial respiration rates are higher on recently fragmented sinking detrital particles.Using aquaria-reared Antarctic krill fecal pellets, we showed fragmentation increased microbial particulate organic carbon (POC) turnover by 1.9×, but only on brown fecal pellets, formed from the consumption of other pellets. Microbial POC turnover on un- and fragmented green fecal pellets, formed from consuming fresh phytoplankton, was equal. Thus, POC content, fragmentation, and potentially nutritional value together drive POC turnover rates.Mesopelagic microbial gardening could be a risky strategy, as the dominant detrital food source is settling particles; even though fragmentation decreases particle size and sinking rate, it is unlikely that an organism would remain with the particle long enough to nutritionally benefit from attached microbes. We propose "communal gardening" occurs whereby additional mesopelagic organisms nearby or below the site of fragmentation consume the particle and the colonized microbes.To determine how fragmentation impacts the remineralization of sinking carbon-rich detritus and to parameterize microbial gardening in mesopelagic carbon models, three key metrics from further controlled experiments and observations are needed; how particle composition (here, pellet color/krill diet) impacts the response of microbes to the fragmentation of particles; the nutritional benefit to zooplankton from ingesting microbes after fragmentation along with identification of which essential nutrients are being targeted; how both these factors vary between physical (shear) and biological particle fragmentation.

13.
Zoology (Jena) ; 146: 125910, 2021 06.
Article in English | MEDLINE | ID: mdl-33735797

ABSTRACT

The ongoing environmental changes in the Southern Ocean may cause a dramatic decrease in habitat quality. Due to its central position in the food web, Antarctic krill (Euphausia superba) is a key species of the marine Antarctic ecosystem. It is therefore crucial to understand how increasing water temperatures affect important krill life-cycle processes. Here, a long-term (August - March) laboratory acclimation experiment at different temperature scenarios (0.5 °C, 1.5 °C, 2.5 °C, 3.5 °C, 5 °C, 7 °C) was performed and the effects of elevated temperatures on whole animal parameters (O2 consumption, body length, length of the digestive gland) were analyzed. The response of krill oxygen consumption to different experimental temperatures differed between acute/short-term and long-term acclimation. After 8 months, krill oxygen consumption remained unchanged up to temperatures of 3.5 °C and was significantly higher at temperatures > 3.5 °C. Krill acclimated to temperatures ≥ 3.5 °C were significantly smaller at the end of the experiment. Limited food intake and/or conversion may have contributed to this effect, especially pronounced after the onset of the reproductive period. In addition, the seasonal growth pattern in males differed from that of females. Together, our findings indicate that warming Southern Ocean waters are likely to increase metabolic rate in krill, possibly altering the amount of energy available for other important life-cycle processes, a finding directly related to future population dynamics and fisheries management.


Subject(s)
Climate Change , Euphausiacea/physiology , Oceans and Seas , Animals , Body Size , Oxygen Consumption
14.
Mar Pollut Bull ; 172: 112774, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34364143

ABSTRACT

Mercury is a known potent neurotoxin. The biogeochemical cycle of mercury in the remote Antarctic region is still poorly understood, with Polar climate change contributing added complexity. Longitudinal biomonitoring of mercury accumulation in Antarctic marine megafauna can contribute top-down insight into the bio-physical drivers of wildlife exposure. The bioaccumulative nature of organic mercury renders high trophic predators at the greatest risk of elevated exposure. Humpback whales represent secondary consumers of the Antarctic sea-ice ecosystem and an ideal biomonitoring species for persistent and bioaccumulative compounds due to their extended life-spans. This study provides the first results of mercury accumulation in humpback whales, and places findings within the context of mercury accumulation in both prey, as well as six other species of Antarctic marine megafauna. Combined, these findings contribute new baseline information regarding mercury exposure to Antarctic wildlife, and highlights methodological prerequisites for routine mercury biomonitoring in wildlife via non-lethally biopsied superficial tissues.


Subject(s)
Humpback Whale , Mercury , Animals , Antarctic Regions , Ecosystem , Ice Cover , Mercury/analysis , Oceans and Seas
15.
Dis Aquat Organ ; 88(3): 249-66, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20377014

ABSTRACT

The diversity of parasites found on Nyctiphanes simplex and Nematoscelis difficilis (Order Euphausiacea) was compared during 10 oceanographic cruises made off both coasts of the Baja California peninsula, Mexico. We tested the hypothesis that N. simplex has a more diverse parasitic assemblage than N. difficilis because it is a neritic species, has larger population abundance, and tends to form denser and more compact swarms than N. difficilis. These biological and behavioral features may enhance parasite transmission within swarms. We detected 6 types of ectoparasites: (1) epibiotic diatoms Licmophora sp.; (2) Ephelotidae suctorian ciliates; (3) Foettingeriidae exuviotrophic apostome ciliates; (4) an unidentified epicaridean cryptoniscus larvae (isopoda); and 2 castrators: (5) the ectoparasitic Dajidae isopod Notophryxus lateralis and (6) the ellobiopsid mesoparasite Thalassomyces fagei. We also detected 7 types of endoparasites: (1) an undescribed Collinia ciliate (Apostomatida); 3 types of Cestoda: (2) a Tetrarhynchobothruium sp. (Trypanorhyncha), (3) Echinobothrium sp. (Diphyllidea: Echinobothyriidae), and (4) unidentified metacestode; (5) a Trematoda Paronatrema-like metacercaria (Syncoeliidae); (6) the nematode Anisakis simplex (L3); and (7) Polymorphidae acantocephalan larvae (acanthor, acanthella, and cystacanth larval stages). N. simplex is affected by all types of parasites, except the isopod N. lateralis, having a considerably larger parasitic diversity and prevalence rates than N. difficilis, which is only infested with 3 types of ectoparasites and T. fagei. Euphausiid swarming is an adaptive behavior for reproduction, protection against predators, and increased efficiency in food searching, but has a negative effect due to parasitism. Although the advantages of aggregation must overcome the reduction of population and individual fitness induced by parasites, we demonstrated that all types of parasites can affect approximately 14% of N. simplex individuals. Collinia spp. endoparasitoids must occasionally have a significant influence on population mortality with potential epizootic events.


Subject(s)
Crustacea , Parasitic Diseases, Animal/parasitology , Animals , Cestoda , Ciliophora , Diatoms , Mexico/epidemiology , Nematoda , Oceans and Seas , Parasitic Diseases, Animal/epidemiology , Time Factors , Trematoda
16.
Sci Rep ; 10(1): 16796, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033314

ABSTRACT

Antarctic krill (Euphausia superba) are high latitude pelagic organisms which play a key ecological role in the ecosystem of the Southern Ocean. To synchronize their daily and seasonal life-traits with their highly rhythmic environment, krill rely on the implementation of rhythmic strategies which might be regulated by a circadian clock. A recent analysis of krill circadian transcriptome revealed that their clock might be characterized by an endogenous free-running period of about 12-15 h. Using krill exposed to simulated light/dark cycles (LD) and constant darkness (DD), we investigated the circadian regulation of krill diel vertical migration (DVM) and oxygen consumption, together with daily patterns of clock gene expression in brain and eyestalk tissue. In LD, we found clear 24 h rhythms of DVM and oxygen consumption, suggesting a synchronization with photoperiod. In DD, the DVM rhythm shifted to a 12 h period, while the peak of oxygen consumption displayed a temporal advance during the subjective light phase. This suggested that in free-running conditions the periodicity of these clock-regulated output functions might reflect the shortening of the endogenous period observed at the transcriptional level. Moreover, differences in the expression patterns of clock gene in brain and eyestalk, in LD and DD, suggested the presence in krill of a multiple oscillator system. Evidence of short periodicities in krill behavior and physiology further supports the hypothesis that a short endogenous period might represent a circadian adaption to cope with extreme seasonal photoperiodic variability at high latitude.


Subject(s)
Behavior, Animal/physiology , Circadian Rhythm/physiology , Ecosystem , Euphausiacea/physiology , Photoperiod , Transcriptome , Animals , Antarctic Regions , Oceans and Seas , Oxygen Consumption/physiology
17.
Sci Rep ; 10(1): 6060, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32269236

ABSTRACT

Antarctic krill (Euphausia superba) are a key component of the Antarctic food web with considerable lipid reserves that are vital for their health and higher predator survival. Krill lipids are primarily derived from their diet of plankton, in particular diatoms and flagellates. Few attempts have been made to link the spatial and temporal variations in krill lipids to those in their food supply. Remotely-sensed environmental parameters provide large-scale information on the potential availability of krill food, although relating this to physiological and biochemical differences has only been performed on small scales and with limited samples. Our study utilised remotely-sensed data (chlorophyll a and sea surface temperature) coupled with krill lipid data obtained from 3 years of fishery-derived samples. We examined within and between year variation of trends in both the environment and krill biochemistry data. Chlorophyll a levels were positively related to krill lipid levels, particularly triacylglycerol. Plankton fatty acid biomarkers analysed in krill (such as n-3 polyunsaturated fatty acids) increased with decreasing sea surface temperature and increasing chlorophyll a levels. Our study demonstrates the utility of combining remote-sensing and biochemical data in examining biological and physiological relationships between Antarctic krill and the Southern Ocean environment.


Subject(s)
Euphausiacea/metabolism , Fatty Acids/metabolism , Animals , Antarctic Regions , Australia , Chlorophyll/metabolism , Lipid Metabolism , Oceans and Seas , Satellite Communications , Seasons , Temperature , Triglycerides/metabolism
18.
Sci Rep ; 9(1): 12375, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451724

ABSTRACT

Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 µatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 µatm) and an extreme pCO2 level (4000 µatm). Total lipid mass (mg g-1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 µatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.


Subject(s)
Acids/chemistry , Euphausiacea/metabolism , Fatty Acids/analysis , Oceans and Seas , Adaptation, Physiological , Animals , Carbon Dioxide/analysis , Euphausiacea/immunology , Phospholipids/analysis , Principal Component Analysis , Sterols/analysis
19.
Sci Rep ; 9(1): 13894, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554872

ABSTRACT

Antarctic krill (Euphausia superba) is a high latitude pelagic organism which plays a central role in the Southern Ocean ecosystem. E. superba shows daily and seasonal rhythms in physiology and behaviour, which are synchronized with the environmental cycles of its habitat. Recently, the main components of the krill circadian machinery have been identified and characterized. However, the exact mechanisms through which the endogenous timing system operates the control and regulation of the overt rhythms remains only partially understood. Here we investigate the involvement of the circadian clock in the temporal orchestration of gene expression by using a newly developed version of a krill microarray platform. The analysis of transcriptome data from krill exposed to both light-dark cycles (LD 18:6) and constant darkness (DD), has led to the identification of 1,564 putative clock-controlled genes. A remarkably large proportion of such genes, including several clock components (clock, period, cry2, vrille, and slimb), show oscillatory expression patterns in DD, with a periodicity shorter than 24 hours. Energy-storage pathways appear to be regulated by the endogenous clock in accordance with their ecological relevance in daily energy managing and overwintering. Our results provide the first representation of the krill circadian transcriptome under laboratory, free-running conditions.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Euphausiacea/genetics , Euphausiacea/physiology , Transcriptome/genetics , Animals , Antarctic Regions , Darkness , Ecosystem , Photoperiod
20.
Sci Rep ; 9(1): 381, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674981

ABSTRACT

Animal positions within moving groups may reflect multiple motivations including saving energy and sensing neighbors. These motivations have been proposed for schools of Antarctic krill, but little is known about their three-dimensional structure. Stereophotogrammetric images of Antarctic krill schooling in the laboratory are used to determine statistical distributions of swimming speed, nearest neighbor distance, and three-dimensional nearest neighbor positions. The krill schools swim at speeds of two body lengths per second at nearest neighbor distances of one body length and reach similarly high levels of organization as fish schools. The nearest neighbor position distribution is highly anisotropic and shows that Antarctic krill prefer to swim in the propulsion jet of their anterior neighbor. This position promotes communication and coordination among schoolmates via hydrodynamic signals within the pulsed jet created by the metachronal stroking of the neighboring krill's pleopods. The hydrodynamic communication channel therefore plays a large role in structuring the school. Further, Antarctic krill avoid having a nearest neighbor directly overhead, possibly to avoid blockage of overhead light needed for orientation. Other factors, including the elongated body shape of Antarctic krill and potential energy savings, also may help determine the three dimensional spatial structure of tightly packed krill schools.

SELECTION OF CITATIONS
SEARCH DETAIL