Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Virol ; 98(2): e0182523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289105

ABSTRACT

Unspliced HIV-1 RNAs function as messenger RNAs for Gag or Gag-Pol polyproteins and progeny genomes packaged into virus particles. Recently, it has been reported that fate of the RNAs might be primarily determined, depending on transcriptional initiation sites among three consecutive deoxyguanosine residues (GGG tract) downstream of TATA-box in the 5' long terminal repeat (LTR). Although HIV-1 RNA transcription starts mostly from the first deoxyguanosine of the GGG tract and often from the second or third deoxyguanosine, RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine, were predominant in HIV-1 particles. Despite selective packaging of G1-form RNAs into virus particles, its biological impact during viral replication remains to be determined. In this study, we revealed that G1-form RNAs are primarily selected as a template for provirus DNA rather than other RNAs. In competitions between HIV-1 and lentiviral vector transcripts in virus-producing cells, approximately 80% of infectious particles were found to generate provirus using HIV-1 transcripts, while lentiviral vector transcripts were conversely selected when we used HIV-1 mutants in which the third deoxyguanosine in the GGG tract was replaced with deoxythymidine or deoxycytidine (GGT or GGC mutants, respectively). In the other analyses of proviral sequences after infection with an HIV-1 mutant in which the GGG tract in 3' LTR was replaced with TTT, most proviral sequences of the GGG-tract region in 5' LTR were found to be TTG, which is reasonably generated using the G1-form transcripts. Our results indicate that the G1-form RNAs serve as a dominant genome to establish provirus DNA.IMPORTANCESince the promoter for transcribing HIV-1 RNA is unique, all viral elements including genomic RNA and viral proteins have to be generated by the unique transcripts through ingenious mechanisms including RNA splicing and frameshifting during protein translation. Previous studies suggested a new mechanism for diversification of HIV-1 RNA functions by heterogeneous transcriptional initiation site usage; HIV-1 RNAs whose transcription initiates from a certain nucleotide were predominant in virus particles. In this study, we established two methods to analyze heterogenous transcriptional initiation site usage by HIV-1 during viral infection and showed that RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine of the GGG tract in 5' LTR, were primarily selected as viral genome in infectious particles and thus are used as a template to generate provirus for continuous replication. This study provides insights into the mechanism for diversification of unspliced RNA functions and requisites of lentivirus infectivity.


Subject(s)
HIV-1 , Proviruses , Deoxyguanosine/genetics , Guanosine/genetics , HIV Long Terminal Repeat/genetics , HIV-1/physiology , Proviruses/genetics , RNA, Viral/genetics , Terminal Repeat Sequences
2.
Biochem Biophys Res Commun ; 691: 149327, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38039839

ABSTRACT

Although structures of many RNA loops, such as GNRA and UNCG tetraloops, were well known, it is still possible to find more RNA structures. In the present study, solution structure of an RNA fragment having UUCGA pentaloop was analyzed by NMR spectroscopy. It was found that the UUCG tetraloop is formed and the adenosine residue at the 3' side of the tetraloop is bulged out. The characteristic motif of the loop-bulge structure has also been found in other RNAs including CUUGU and CUGGC pentaloops. Along with the recently found T-hairpin structure with a UUUGAUU loop, in which UUUGA pentaloop and UU bulge are formed, the loop-bulge structures can be categorized as an RNA motif and it may be called as the integrated structure loop, I-loop.


Subject(s)
RNA , Nucleic Acid Conformation , RNA/chemistry , Nucleotide Motifs , Magnetic Resonance Spectroscopy
3.
RNA ; 28(4): 541-550, 2022 04.
Article in English | MEDLINE | ID: mdl-34987083

ABSTRACT

PIWI-interacting RNAs (piRNAs) repress transposons to protect the germline genome from DNA damage caused by transposon transposition. In Drosophila, the Traffic jam (Tj) mRNA is consumed to produce piRNA in its 3'-UTR. A cis element located within the 3'-UTR, Tj-cis, is necessary for piRNA biogenesis. In this study, we analyzed the structure of the Tj-cis RNA, a 100-nt RNA corresponding to the Tj-cis element, by the SHAPE and NMR analyses and found that a stable hairpin structure formed in the 5' half of the Tj-cis RNA. The tertiary structure of the 16-nt stable hairpin was analyzed by NMR, and a novel stem-loop structure, the T-hairpin, was found. In the T-hairpin, four uridine residues are exposed to the solvent, suggesting that this stem-loop is the target of Yb protein, a Tudor domain-containing piRNA biogenesis factor. The piRNA biogenesis assay showed that both the T-hairpin and the 3' half are required for the function of the Tj-cis element, suggesting that both the T-hairpin and the 3' half are recognized by Yb protein.


Subject(s)
Drosophila Proteins , Animals , DNA Transposable Elements , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Germ Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
J Am Chem Soc ; 145(37): 20432-20441, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37677157

ABSTRACT

XenoAptamers are DNA fragments containing additional letters (unnatural bases, UBs) that bind specifically to their target proteins with high affinities (sub-nanomolar KD values). One of the UBs is the highly hydrophobic 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), which significantly increases XenoAptamers' affinities to targets. Originally, Ds was developed as a third base pair with a complementary UB, 2-nitro-4-propynylpyrrole (Px), for replication, and thus it can be used for aptamer generation by an evolutional engineering method involving PCR amplification. However, it is unclear whether the Ds base is the best component as the hydrophobic fifth-letter ligand for interactions with target proteins. To optimize the ligand structure of the fifth letter, we prepared 13 Ds variants and examined the affinities of XenoAptamers containing these variants to target proteins. The results obtained using four XenoAptamers prepared by the replacement of Ds bases with variants indicated that subtle changes in the chemical structure of Ds significantly affect the XenoAptamer affinities. Among the variants, placing either 4-(2-thienyl)pyrrolo[2,3-b]pyridine (Ys) or 4-(2-thienyl)benzimidazole (Bs) at specific Ds positions in each original XenoAptamer greatly improved their affinities to targets. The Ys and Bs bases are variants derived by replacing only one nitrogen with a carbon in the Ds base. These results demonstrate the strict intramolecular interactions, which are not simple hydrophobic contacts between UBs and targets, thus providing a method to mature XenoAptamers' affinities to targets.


Subject(s)
Biological Evolution , Carbon , Ligands , Engineering , Pyridines
5.
Chemistry ; 28(16): e202104396, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35133046

ABSTRACT

Light-emitting systems using an RNA aptamer-dye pair, such as Spinach RNA, are an attractive method for imaging and tracing RNA expression in vitro and in vivo. We present an alternative Spinach method by genetic alphabet expansion using an unnatural base pair system, in which a dye-conjugated unnatural base substrate is site-specifically incorporated at a specific position in Spinach RNA by transcription involving the third base pair. The incorporation position was predicted by molecular dynamics simulations. This dye-conjugated Spinach RNA increased the thermal stability of the fluorescence, the robustness against ion sensitivity, and the resistance against photobleaching. Furthermore, we applied our method to Baby Spinach, a shorter version of Spinach, for dye conjugation toward the visible detection of transcripts. This is the first demonstration of an alternative RNA imaging method for a detection system using genetic alphabet expansion.


Subject(s)
Aptamers, Nucleotide , RNA , Aptamers, Nucleotide/chemistry , Base Pairing , RNA/genetics , Spinacia oleracea/genetics , Spinacia oleracea/metabolism
6.
J Org Chem ; 87(1): 340-350, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34937340

ABSTRACT

Small molecules targeting DNA regions with structural fluctuation are an important class of molecule as chemical probes for studying the role of these structures in biological systems and the development of neurological disorders. The molecule ANP77 we described here, where a three-atom linker connects two 2-amino-1,8-naphthyridines at the C7 position, was found to form stacked structure with protonation of naphthyridine at low pH, and bound to the internal loop consisting of C/CC and T/CC in double-stranded DNA with affinities of 4.8 and 34.4 nM, respectively. Mass spectrometry and isothermal titration calorimetry analyses determined the stoichiometry for the binding as 1:1, and chemical footprinting with permanganate and NMR structural analysis revealed that the T in the T/CC was forced to flip out toward an extrahelical position upon ANP77 binding. Protonated stacked ANP77 interacted with two adjacent cytosines through hydrogen bonding and occupied the position in the duplex by flipping out the C or T opposite CC. Finally, this study demonstrated the potential of ANP77 for binding to the sequences of biological significance with the TG(T/C)CC repeat of the PIG3 promoter and the telomere repeat CCCTAA.


Subject(s)
DNA , Naphthyridines , Cytosine , Hydrogen Bonding
7.
Biochem Biophys Res Commun ; 557: 104-109, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33862452

ABSTRACT

Cel7 RNA is a member of the Caenorhabditis elegans stem-bulge RNAs (sbRNAs) that are classified into the Y RNA family based on their structural similarity. We identified a 15-nucleotide-shorter form of Cel7 RNA and designated it Cel7s RNA. Both Cel7 and Cel7s RNAs increased during the development of worms from L1 to adult. Cel7s RNA was notably more abundant in embryos than in L1 to L3 larvae. Cel7 RNA in embryo was less than those in L2 to adult. The ratio of cellular level of Cel7 RNA to that of Cel7s RNA was higher in L1 to L4, but reversed in embryos and adults. In rop-1 mutants, in which the gene for the C. elegans Ro60 homolog, ROP-1, was disrupted, Cel7s RNA decreased similar to CeY RNA, another C. elegans Y RNA homolog. Surprisingly, Cel7 RNA, existed stably in the absence of ROP-1, unlike Cel7s and CeY RNAs. Gel-shift assays demonstrated that Cel7 and Cel7s RNAs bound to ROP-1 in a similar manner, which was much weaker than CeY RNA. The 5'-terminal 15-nt of Cel7 RNA could be folded into a short stem-loop structure, probably contributing to the stability of Cel7 RNA in vivo and the distinct expression patterns of the 2 RNAs.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , RNA Processing, Post-Transcriptional , RNA/metabolism , Ribonucleoproteins/metabolism , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Protein Isoforms , RNA/chemistry , RNA/genetics , Ribonucleoproteins/genetics
8.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575896

ABSTRACT

For the last 20 years, it has been common lore that the free energy of RNA duplexes formed from canonical Watson-Crick base pairs (bps) can be largely approximated with dinucleotide bp parameters and a few simple corrective constants that are duplex independent. Additionally, the standard benchmark set of duplexes used to generate the parameters were GC-rich in the shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes ranged between 6 and 8 bps. We were curious if other models would generate similar results and whether adding longer duplexes of 17 bps would affect the conclusions. We developed a gradient-descent fitting program for obtaining free-energy parameters-the changes in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), and the melting temperature (Tm)-directly from the experimental melting curves. Using gradient descent and a genetic algorithm, the duplex melting results were combined with the standard benchmark data to obtain bp parameters. Both the standard (Turner) model and a new model that includes length-dependent terms were tested. Both models could fit the standard benchmark data; however, the new model could handle longer sequences better. We developed an updated strategy for fitting the duplex melting data.


Subject(s)
RNA, Double-Stranded/chemistry , Algorithms , Base Pairing , Entropy , Linear Models , Models, Genetic , Models, Statistical , Models, Theoretical , Normal Distribution , Nucleic Acid Conformation , Temperature , Thermodynamics
9.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244348

ABSTRACT

Excessive accumulation of polyamines causes cytotoxicity, including inhibition of cell growth and a decrease in viability. We investigated the mechanism of cytotoxicity caused by spermidine accumulation under various conditions using an Escherichia coli strain deficient in spermidine acetyltransferase (SAT), a key catabolic enzyme in controlling polyamine levels. Due to the excessive accumulation of polyamines by the addition of exogenous spermidine to the growth medium, cell growth and viability were markedly decreased through translational repression of specific proteins [RMF (ribosome modulation factor) and Fis (rRNA transcription factor) etc.] encoded by members of polyamine modulon, which are essential for cell growth and viability. In particular, synthesis of proteins that have unusual locations of the Shine-Dalgarno (SD) sequence in their mRNAs was inhibited. In order to elucidate the molecular mechanism of cytotoxicity by the excessive accumulation of spermidine, the spermidine-dependent structural change of the bulged-out region in the mRNA at the initiation site of the rmf mRNA was examined using NMR analysis. It was suggested that the structure of the mRNA bulged-out region is affected by excess spermidine, so the SD sequence of the rmf mRNA cannot approach initiation codon AUG.


Subject(s)
Escherichia coli/metabolism , Polyamines/metabolism , Polyamines/pharmacology , Protein Processing, Post-Translational/drug effects , Trimebutine/metabolism , Acetyltransferases/genetics , Codon, Initiator , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Microbial Viability/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger , Ribosomes/metabolism , Spermidine/metabolism , Spermidine/toxicity , Transcription Factors/metabolism
10.
Biochem Biophys Res Commun ; 516(4): 1145-1151, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31284953

ABSTRACT

Reverse transcription of retroviral RNA is accomplished through a minus-strand strong stop cDNA (-sscDNA) synthesis and subsequent strand-transfer reactions. We have previously reported a critical role of guanosine (G) number at 5'-terminal of HIV-1 RNA for successful strand-transfer of -sscDNA. In this study, role(s) of the cap consisting of 7-methyl guanosine (7mG), a hallmark of transcripts generated by RNA polymerase II, at the 5'-end G nucleotide (5'-G) of HIV-1 RNA were examined. In parallel, contribution of highly conserved GGG tract located at the U3/R boundary in 3' terminal region of viral RNA (3'-GGG tract) was also addressed. The in vitro reverse transcription analysis using synthetic HIV-1 RNAs possessing the 5'-G with cap or triphosphate form demonstrated that the 5'-cap significantly increased strand-transfer efficiency of -sscDNA. Meanwhile, effect of the 5'-cap on the strand-transfer was retained in the reaction using mutant HIV-1 RNAs in which two Gs were deleted from the 3'-GGG tract. Lack of apparent contribution of the 3'-GGG tract during strand-transfer events in vitro was reproduced in the context of HIV-1 replication within cells. Instead, we noticed that the 3'-GGG tract might be required for efficient gene expression from proviral DNA. These results indicated that 7mG of the cap on HIV-1 RNA might not be reverse-transcribed and a possible role of the 3'-GGG tract to accept the non-template nucleotide addition during -sscDNA synthesis might be less likely. The 5'-G modifications of HIV-1 RNAs by the cap- or phosphate-removal enzyme revealed that the cap or monophosphate form of the 5'-G was preferred for the 1st strand-transfer compared to the triphosphate or non-phosphate form. Taken together, a status of the 5'-G determined strand-transfer efficiency of -sscDNA without affecting the non-template nucleotide addition, probably by affecting association of the 5'-G with 3'-end region of viral RNA.


Subject(s)
HIV Infections/virology , HIV-1/genetics , RNA Caps/genetics , RNA, Viral/genetics , Reverse Transcription , Base Sequence , Cell Line , Conserved Sequence , DNA, Complementary/chemistry , DNA, Complementary/genetics , Guanosine/chemistry , Guanosine/genetics , HIV-1/chemistry , Humans , RNA Caps/chemistry , RNA, Viral/chemistry
11.
Bioorg Med Chem ; 27(10): 2140-2148, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30952388

ABSTRACT

Small-molecule modulators, along with antisense oligonucleotide, would be powerful tools and potential drug candidates for modulating miRNA-related gene expressions. The mechanism of the inhibitory effect of the C-bulge binding small molecule BzDANP for the Dicer processing reaction of pre-miR-136 was discussed on the data obtained by SPR, NMR, and kinetic analysis for Dicer processing. SPR and NMR analysis showed the preference of BzDANP binding to the C-bulge. Michaelis-Menten analysis suggested the formation of a ternary complex pre-miR-136-BzDANP-Dicer during the Dicer-cleavage reaction of pre-miR-136 in the presence of BzDANP. The inhibitory effect of BzDANP is likely attributed to the slower reaction from the ternary complex than that from the binary pre-miR-136-Dicer complex.


Subject(s)
DEAD-box RNA Helicases/metabolism , MicroRNAs/chemistry , Naphthyridines/chemistry , Ribonuclease III/metabolism , Small Molecule Libraries/chemistry , DEAD-box RNA Helicases/antagonists & inhibitors , Electron Spin Resonance Spectroscopy , Humans , Magnetic Resonance Spectroscopy , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Naphthyridines/metabolism , Nucleic Acid Conformation , Protein Binding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , Ribonuclease III/antagonists & inhibitors , Small Molecule Libraries/metabolism
12.
Biochem J ; 475(23): 3797-3812, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30401686

ABSTRACT

Glycosaminoglycans (GAGs), a group of structurally related acidic polysaccharides, are primarily found as glycan moieties of proteoglycans (PGs). Among these, chondroitin sulfate (CS) and dermatan sulfate, side chains of PGs, are widely distributed in animal kingdom and show structural variations, such as sulfation patterns and degree of epimerization, which are responsible for their physiological functions through interactions with growth factors, chemokines and adhesion molecules. However, structural changes in CS, particularly the ratio of 4-O-sulfation to 6-O-sulfation (4S/6S) and CS chain length that occur during the aging process, are not fully understood. We found that 4S/6S ratio and molecular weight of CS were decreased in polyamine-depleted cells. In addition, decreased levels of chondroitin synthase 1 (CHSY1) and chondroitin 4-O-sulfotransferase 2 proteins were also observed on polyamine depletion. Interestingly, the translation initiation of CHSY1 was suppressed by a highly structured sequence (positions -202 to -117 relative to the initiation codon) containing RNA G-quadruplex (G4) structures in 5'-untranslated region. The formation of the G4s was influenced by the neighboring sequences to the G4s and polyamine stimulation of CHSY1 synthesis disappeared when the formation of the G4s was inhibited by site-directed mutagenesis. These results suggest that the destabilization of G4 structures by polyamines stimulates CHSY1 synthesis and, at least in part, contribute to the maturation of CS chains.


Subject(s)
5' Untranslated Regions/genetics , G-Quadruplexes , Gene Expression/drug effects , N-Acetylgalactosaminyltransferases/genetics , Polyamines/pharmacology , RNA Folding/drug effects , A549 Cells , Animals , CHO Cells , Caco-2 Cells , Cell Line, Tumor , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Cricetinae , Cricetulus , Glucuronosyltransferase , HCT116 Cells , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Mice , Multifunctional Enzymes , N-Acetylgalactosaminyltransferases/metabolism , NIH 3T3 Cells , Polyamines/metabolism , RNA Folding/genetics , RNA Interference
13.
Biochemistry ; 55(45): 6221-6229, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27766833

ABSTRACT

AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.


Subject(s)
Aptamers, Nucleotide/chemistry , Core Binding Factor Alpha 2 Subunit/chemistry , Protein Domains , Thermodynamics , Amino Acid Sequence , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Base Sequence , Binding Sites/genetics , Binding, Competitive , Calorimetry/methods , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Static Electricity , Surface Plasmon Resonance
14.
Genomics ; 106(2): 122-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26003051

ABSTRACT

In order to find novel structured small RNAs, next-generation sequencing was applied to small RNA fractions with lengths ranging from 40 to 140 nt and secondary structure-based clustering was performed. Sequences of structured RNAs were effectively clustered and analyzed by secondary structure. Although more than 99% of the obtained sequences were known RNAs, 16 candidate mouse structured small non-coding RNAs (MsncRs) were isolated. Based on these results, the merits of secondary structure-based analysis are discussed.


Subject(s)
Brain Chemistry , RNA, Small Untranslated/chemistry , Animals , Cluster Analysis , High-Throughput Nucleotide Sequencing , Male , Mice , Nucleic Acid Conformation , Sequence Analysis, RNA
15.
RNA ; 19(7): 927-36, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23709277

ABSTRACT

AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.


Subject(s)
Conserved Sequence , Core Binding Factor Alpha 2 Subunit/metabolism , Nucleotide Motifs , Aptamers, Nucleotide , Base Sequence , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Guanine/metabolism , Magnetic Resonance Spectroscopy , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
Chembiochem ; 15(18): 2766-73, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25403811

ABSTRACT

The anti-HIV lectin actinohivin (AH) specifically interacts with HMTG (high-mannose-type glycan), which is attached to the glycoprotein gp120 of HIV-1 in a process in which the three branched mannotriose chains (D1, D2, and D3) of HMTG exhibit different binding affinities, it being estimated that that of D1 is the strongest, that of D3 is weaker, and that of D2 is undetectable. These properties have been ascribed to the stereochemical differences in linkages between the second and the third mannose residues of the three chains. In order to clarify the interaction geometry between AH and the major target D1, an X-ray determination of the crystal structure of AH in complex with D1-which is α(1,2)mannotriose composed of three mannose (Man) residues linked together only by α(1,2) bonding-has been performed. In each of the three D1-binding pockets of AH, two Man residues of D1 are accommodated at zones 1 and 2 in the pocket, in the same way as those found in the α(1,2)mannobiose-bound AH crystals. However, an OMIT map shows poor densities at both ends of the two residues. This suggests the existence of positional disorder of D1 in the pocket: the two zones are each occupied by two Man residues in two different modes, with mode A involving the Man1 and Man2 residues and mode B the Man2 and Man3 residues. In each mode, D1 is stabilized by adopting a double-bracket-shaped conformation through CH⋅⋅⋅O interactions. In mode B, however, the Man1 residue, which is the most sensitive residue to AH binding, protrudes wholly into the solvent region without contacts with AH. In mode A, in contrast, the Man3 residue interacts with the essential hydrophobic amino acid residues (Tyr and Leu conserved between the three pockets) of AH. Therefore, mode A is likely to be the one that occurs when whole HMTG is bound. In this mode, the two hydroxy groups (O3 and O4) of the Man2 residue are anchored in zone 2 by four hydrogen bonds with Asp, Asn, and Tyr residues of AH. In addition, it has been found that an isolated water molecule buried in the hydrophobic long loop bridges between Asp of AH and the hydroxy group of Man2 through hydrogen bonds. The most interesting feature is found in the interaction of the Man1 and Man3 residues with AH. All eight hydroxy groups of the two residues are completely exposed in the solvent region, whereas their hydrophobic parts make contacts with a Leu residue and two Tyr residues so that the shape of D1 and the surface of AH fit well over a wide area. These structural characteristics are potentially useful for development of AH to produce more effective antiretroviral drugs to suppress the infectious expansion of HIV/AIDS and to help expedite an end to the HIV/AIDS pandemic in the near future.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , HIV Envelope Protein gp120/metabolism , Lectins/chemistry , Lectins/pharmacology , Crystallography, X-Ray , HIV Envelope Protein gp120/chemistry , HIV Infections/drug therapy , HIV-1/chemistry , HIV-1/drug effects , HIV-1/metabolism , Humans , Molecular Docking Simulation
17.
Biosci Biotechnol Biochem ; 78(11): 1864-70, 2014.
Article in English | MEDLINE | ID: mdl-25052097

ABSTRACT

We previously used nuclear magnetic resonance (NMR) to analyze the structure of a synthetic tricosapeptide corresponding to an active site of microtubule-associated protein 4 (MAP4). To further the structural analysis, we have constructed a minimal active domain fragment of MAP4, encompassing the entire active site, and obtained its NMR spectra. The secondary structure prediction using partially assigned NMR data suggested that the fragment is largely unfolded. Two other independent techniques also demonstrated its unfolded nature, indicating that MAP4 belongs to the class of intrinsically disordered proteins (IDPs). The NMR spectra of the fragment-microtubule mixture revealed that the fragment binds to the microtubule using multiple binding sites, apparently contradicting our previous quantitative studies. Given that MAP4 is intrinsically disordered, we propose a mechanism in which any one of the binding sites is active at a time, which is one of the typical interaction mechanisms proposed for IDPs.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Models, Biological , Peptide Fragments/genetics , Catalytic Domain , Magnetic Resonance Spectroscopy , Microtubule-Associated Proteins/chemistry , Microtubules/chemistry , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary
18.
Nucleic Acids Res ; 40(4): 1856-67, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22053080

ABSTRACT

Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)(3)A that are recognized by BsHfq and crystal structures of the BsHfq-(AG)(3)A complex at 2.2 Å resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)(3)A. In particular, R32 appears to interact with G bases in (AG)(3)A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and protein-RNA interaction patterns engaged in the R32 residues of BsHfq-(AG)(3)A differ from those of EcHfq-poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA.


Subject(s)
Aptamers, Nucleotide/chemistry , Bacillus subtilis , Host Factor 1 Protein/chemistry , RNA/chemistry , Binding Sites , Crystallography, X-Ray , Host Factor 1 Protein/genetics , Models, Molecular , Mutation , Nucleotide Motifs , Protein Binding , SELEX Aptamer Technique
19.
J Biochem ; 175(6): 671-676, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38302756

ABSTRACT

Crystal structure of a ribonuclease for ribosomal RNA processing, FAU-1, from Pyrococcus furiosus was determined with the resolution of 2.57 Å in a homo-trimeric form. The monomer structure consists of two domains: N-terminal and C-terminal domains. C-terminal domain forms trimer and each N-terminal domain locates outside of the trimer core. In the obtained crystal, a dinucleotide, pApUp, was bound to the N-terminal domain, indicating that N-terminal domain has the RNA-binding ability. The affinities to RNA of FAU-1 and a fragment corresponding to the N-terminal domain, FAU-ΔC, were confirmed by polyacrylamide gel electrophoresis and nuclear magnetic resonance (NMR). Interestingly, well-dispersed NMR signals were observed at 318K, indicating that the FAU-ΔC-F18 complex form an ordered structure at higher temperature. As predicted in our previous works, FAU-1 and ribonuclease (RNase) E show a structural similarity in their RNA-binding regions. However, structural similarity between RNase E and FAU-1 could be found in the limited regions of the N-terminal domain. On the other hand, structural similarity between C-terminal domain and some proteins including a phosphatase was found. Thus, it is possible that the catalytic site is located in C-terminal domain.


Subject(s)
Pyrococcus furiosus , Pyrococcus furiosus/enzymology , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , Models, Molecular , Crystallography, X-Ray , Ribonucleases/metabolism , Ribonucleases/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Protein Conformation , Protein Multimerization
20.
Front Mol Biosci ; 10: 1145528, 2023.
Article in English | MEDLINE | ID: mdl-36999159

ABSTRACT

RNA-targeted small molecules are a promising modality in drug discovery. Recently, we found that a fluoroquinolone derivative, KG022, can bind to RNAs with bulged C or G. To clarify the RNA specificity of KG022, we analyzed the effect of the base pair located at the 3'side of the bulged residue. It was found that KG022 prefers G-C and A-U base pairs at the 3'side. Solution structures of the complexes of KG022 with the four RNA molecules with bulged C or G and G-C or A-U base pairs at the 3'side of the bulged residue were determined to find that the fluoroquinolone moiety is located between two purine bases, and this may be the mechanism of the specificity. This work provides an important example of the specificity of RNA-targeted small molecules.

SELECTION OF CITATIONS
SEARCH DETAIL