Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Langmuir ; 37(14): 4172-4182, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33788574

ABSTRACT

Micrometer-sized hydrophobic polyaniline (PANI) grains were synthesized via an aqueous chemical oxidative polymerization protocol in the presence of dopant carrying perfluoroalkyl or alkyl groups. The critical surface tensions of the PANIs synthesized in the presence of heptadecafluorooctanesulfonic acid and sodium dodecyl sulfate dopants were lower than that of PANI synthesized in the absence of dopant, indicating the presence of hydrophobic dopant on the grain surfaces. The PANI grains could adsorb to air-liquid interfaces, and aqueous and nonaqueous liquid marbles (LMs) were successfully fabricated using liquids with surface tensions ranging between 72.8 and 42.9 mN/m. Thermography studies confirmed that the surface temperature of the LMs increased by near-infrared light irradiation thanks to the photothermal property of the PANI, and the maximum temperatures measured for nonaqueous LMs were higher than that measured for aqueous LM. We demonstrated that transport of the LMs on a planar water surface can be achieved via Marangoni flow generated by the near-infrared light-induced temperature gradient. Numerical analyses indicated that the LMs containing liquids with lower specific heat and thermal conductivity and higher density showed longer path length per one light irradiation shot and longer decay time. This is because generated heat could efficiently transfer from the LMs to the water surface and larger inertial force could work on the LMs. The LMs could also move over the solid substrate thanks to their near-spherical shapes. Furthermore, it was also demonstrated that the inner liquids of the LMs could be released on site by an external stimulus.

2.
RSC Adv ; 9(15): 8333-8339, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-35518708

ABSTRACT

A centimeter-sized flat-headed push pin with photothermal properties can be moved on a water surface by a simple near-infrared laser. Using light as an external stimulus allows for the remote control of the timing, direction and velocity of its locomotion. It has been clarified that the vertical orientation of the pin at the air-water interface affects the friction of locomotion, and therefore velocity and acceleration. The pin placed on a water surface with a pin point upward (a point protruding into air phase) moved an average distance of 5.3 ± 2.9 cm following one pulse of laser irradiation, and that placed with a pin point downward (a point protruding into water phase) moved 2.0 ± 1.4 cm. The velocity and acceleration were larger when the pin was placed on the water surface with a pin pointing upward, compared to when placed with the pin pointing downward. Numerical analysis conducted for the locomotions of the pin concluded that the differences in traveling distance, velocity and acceleration were due to the difference in fluid resistance of the pin point in air and water phases during their locomotion. This demonstration of remote control of the motion of small objects by light can open up a wide range of future transport applications.

3.
J Colloid Interface Sci ; 529: 486-495, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29957574

ABSTRACT

HYPOTHESIS: Particle cohesion and conductivity affects the electrostatically driven transport of particles to a suspended water droplet. The conditions at which liquid marbles and particle stabilised liquid droplets form are a function of these parameters. EXPERIMENT: Particle beds placed below an earthed pendent water drop had a negative potential applied, thus inducing an opposing positive charge on the liquid, which results in particle transfer and eventual coating of the liquid drop. Experiments where both the particle bed was constantly moved slowly toward the droplet, and the particle bed remained at a fixed, small separation distance were completed. These enabled the investigation of a number of variables that influence successful aggregate formation, including separation distance between the droplet and particle bed, coating mechanism and kinetics of the transfer process. FINDINGS: Monodisperse polystyrene core particles with polypyrrole shells of various cohesiveness and conductivity were observed to behave differently in the presence of the applied potential, where the least cohesive and conductive sample (polystyrene) required the smallest separation distance, i.e. the greatest field strength for particle transfer. Increasing conductivity of the particle shell decreases the field strength required for particle transfer, and thus an increase was observed in separation distance at which particles were observed to move to the air-water interface. The transfer kinetics followed the same trend where the least conductive and cohesive sample was the slowest to coat the air-water interface, and vice-versa. Since an increase in cohesion hinders particle transfer, it is concluded that particle conductivity is of greater importance in the electrostatic aggregation process.

4.
ACS Appl Mater Interfaces ; 9(38): 33351-33359, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28879765

ABSTRACT

Remotely controlling the movement of small objects is desirable, especially for the transportation and selection of materials. Transfer of objects between liquid and solid surfaces and triggering their release would allow for development of novel material transportation technology. Here, we describe the remote transport of a material from a water film surface to a solid surface using quasispherical liquid marbles (LMs). A light-induced Marangoni flow or an air stream is used to propel the LMs on water. As the LMs approach the rim of the water film, gravity forces them to slide down the water rim and roll onto the solid surface. Through this method, LMs can be efficiently moved on water and placed on a solid surface. The materials encapsulated within LMs can be released at a specific time by an external stimulus. We analyzed the velocity, acceleration, and force of the LMs on the liquid and solid surfaces. On water, the sliding friction due to the drag force resists the movement of the LMs. On a solid surface, the rolling distance is affected by the surface roughness of the LMs.

5.
Rev Sci Instrum ; 86(8): 083511, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26329196

ABSTRACT

For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.

6.
Rev Sci Instrum ; 79(10): 10E301, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044463

ABSTRACT

Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 microm, 256 x 360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF(2) optics and an aluminum mirror. The IRVB foil is 7 cm x 9 cm x 5 microm tantalum. A noise equivalent power density of 300 microW/cm(2) is achieved with 40 x 24 channels and a time response of 10 ms or 23 microW/cm(2) for 16 x 12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

SELECTION OF CITATIONS
SEARCH DETAIL