ABSTRACT
ABSTRACT: Bruton tyrosine kinase inhibitors (BTKis) that target B-cell receptor signaling have led to a paradigm shift in chronic lymphocytic leukemia (CLL) treatment. BTKis have been shown to reduce abnormally high CLL-associated T-cell counts and the expression of immune checkpoint receptors concomitantly with tumor reduction. However, the impact of BTKi therapy on T-cell function has not been fully characterized. Here, we performed longitudinal immunophenotypic and functional analysis of pretreatment and on-treatment (6 and 12 months) peripheral blood samples from patients in the phase 3 E1912 trial comparing ibrutinib-rituximab with fludarabine, cyclophosphamide, and rituximab (FCR). Intriguingly, we report that despite reduced overall T-cell counts; higher numbers of T cells, including effector CD8+ subsets at baseline and at the 6-month time point, associated with no infections; and favorable progression-free survival in the ibrutinib-rituximab arm. Assays demonstrated enhanced anti-CLL T-cell killing function during ibrutinib-rituximab treatment, including a switch from predominantly CD4+ T-cell:CLL immune synapses at baseline to increased CD8+ lytic synapses on-therapy. Conversely, in the FCR arm, higher T-cell numbers correlated with adverse clinical responses and showed no functional improvement. We further demonstrate the potential of exploiting rejuvenated T-cell cytotoxicity during ibrutinib-rituximab treatment, using the bispecific antibody glofitamab, supporting combination immunotherapy approaches.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Rituximab , Monitoring, Immunologic , Antineoplastic Combined Chemotherapy Protocols , Cyclophosphamide , Immunotherapy , CD8-Positive T-LymphocytesABSTRACT
ABSTRACT: Monoclonal B-cell lymphocytosis (MBL) progresses to chronic lymphocytic leukemia (CLL) requiring therapy at 1% to 5% per year. Improved prediction of progression would greatly benefit individuals with MBL. Patients with CLL separate into 3 distinct epigenetic subtypes (epitypes) with high prognostic significance, and recently the intermediate epitype has been shown to be enriched for high-risk immunoglobulin lambda variable (IGLV) 3-21 rearrangements, impacting outcomes for these patients. Here, we employed this combined strategy to generate the epigenetic and light chain immunoglobulin (ELCLV3-21) signature to classify 219 individuals with MBL. The ELCLV3-21 high-risk signature distinguished MBL individuals with a high probability of progression (39.9% and 71.1% at 5 and 10 years, respectively). ELCLV3-21 improved the accuracy of predicting time to therapy for individuals with MBL compared with other established prognostic indicators, including the CLL international prognostic index (c-statistic, 0.767 vs 0.668, respectively). Comparing ELCLV3-21 risk groups in MBL vs a cohort of 226 patients with CLL revealed ELCLV3-21 high-risk individuals with MBL had significantly shorter time to therapy (P = .003) and reduced overall survival (P = .03) compared with ELCLV3-21 low-risk individuals with CLL. These results highlight the power of the ELCLV3-21 approach to identify individuals with a higher likelihood of adverse clinical outcome and may provide a more accurate approach to classify individuals with small B-cell clones.
Subject(s)
B-Lymphocytes , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphocytosis , Humans , Lymphocytosis/genetics , Lymphocytosis/diagnosis , Lymphocytosis/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Female , Male , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Aged , Middle Aged , Prognosis , Epigenesis, Genetic , Aged, 80 and over , AdultABSTRACT
ABSTRACT: In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.
Subject(s)
Antibodies, Monoclonal, Humanized , Immunotherapy , Therapeutic Index , Antigens, CD19 , Immunotherapy, Adoptive/methodsABSTRACT
BACKGROUND: Occurrence of squamous cell carcinoma (SCC) even in early-stage, untreated chronic lymphocytic leukemia (CLL) patients can be a significant morbidity issue with occasional transformation into metastatic skin lesions. METHODS: CLL cells and extracellular vesicles (EVs) from CLL patients' blood/plasma were purified and used. Expression/activation of AXL and its functions in normal keratinocytes (HEKa) were assessed in vitro co-culture system and in SCC tissues. RESULTS: We detected aberrant activation of AXL, AKT and ERK-1/2 in SCC cell lines compared to HEKa. We also detected increased expression of AXL in primary SCC tissues obtained from CLL patients. Increased activation of AXL, AKT, ERK-1/2 and Src was discernible in HEKa upon co-culturing with CLL cells. Further analysis suggests that Gas6, a ligand of AXL, regulates AXL activation in co-cultured HEKa. Interestingly, exposure of HEKa cells to CLL plasma-derived EVs induced expression of AXL, P-AKT, and EMT-associated markers leading to migration of the cells. Finally, pharmacologic inhibition of AXL induced cell death in SCC lines in a dose dependent manner. CONCLUSIONS: Our findings that CLL cells likely are involved in driving SCC progression, at least in part, via activation of the AXL signaling axis, indicating that AXL inhibition may be beneficial for our CLL patients with SCC.
Subject(s)
Axl Receptor Tyrosine Kinase , Carcinoma, Squamous Cell , Disease Progression , Extracellular Vesicles , Leukemia, Lymphocytic, Chronic, B-Cell , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Proto-Oncogene Proteins/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Extracellular Vesicles/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Cell Line, Tumor , Coculture Techniques , Proto-Oncogene Proteins c-akt/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Male , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/geneticsABSTRACT
Monoclonal B-cell lymphocytosis (MBL) is a common hematological premalignant condition that is understudied in screening cohorts. MBL can be classified into low-count (LC) and high-count (HC) types based on the size of the B-cell clone. Using the Mayo Clinic Biobank, we screened for MBL and evaluated its association with future hematologic malignancy and overall survival (OS). We had a two-stage study design including discovery and validation cohorts. We screened for MBL using an eight-color flow-cytometry assay. Medical records were abstracted for hematological cancers and death. We used Cox regression to evaluate associations and estimate hazard ratios and 95% confidence intervals (CIs), adjusting for age and sex. We identified 1712 (17%) individuals with MBL (95% LC-MBL), and the median follow-up time for OS was 34.4 months with 621 individuals who died. We did not observe an association with OS among individuals with LC-MBL (P = .78) but did among HC-MBL (hazard ratio, 1.8; 95% CI, 1.1-3.1; P = .03). Among the discovery cohort with a median of 10.0 years follow-up, 31 individuals developed hematological cancers with two-thirds being lymphoid malignancies. MBL was associated with 3.6-fold risk of hematological cancer compared to controls (95% CI, 1.7-7.7; P < .001) and 7.7-fold increased risk for lymphoid malignancies (95% CI:3.1-19.2; P < .001). LC-MBL was associated with 4.3-fold risk of lymphoid malignancies (95% CI, 1.4-12.7; P = .009); HC-MBL had a 74-fold increased risk (95% CI, 22-246; P < .001). In this large screening cohort, we observed similar survival among individuals with and without LC-MBL, yet individuals with LC-MBL have a fourfold increased risk of lymphoid malignancies. Accumulating evidence indicates that there are clinical consequences to LC-MBL, a condition that affects 8 to 10 million adults in the United States.
Subject(s)
Hematologic Neoplasms , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphocytosis , Neoplasms, Plasma Cell , Precancerous Conditions , Adult , B-Lymphocytes/pathology , Hematologic Neoplasms/pathology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphocytosis/diagnosis , Neoplasms, Plasma Cell/pathology , Precancerous Conditions/pathologyABSTRACT
Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses, which led to a recent US Food and Drug Administration approval. Despite the success of this therapy, durable remissions continue to be low, and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models, we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7, which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition, CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.
Subject(s)
Cancer-Associated Fibroblasts , Multiple Myeloma , Bone Marrow , Cancer-Associated Fibroblasts/pathology , Cell- and Tissue-Based Therapy , Fibroblasts , Humans , Immunotherapy, Adoptive/methods , Multiple Myeloma/pathology , Tumor MicroenvironmentABSTRACT
Herein, we present the long-term follow-up of the randomized E1912 trial comparing the long-term efficacy of ibrutinib-rituximab (IR) therapy to fludarabine, cyclophosphamide, and rituximab (FCR) and describe the tolerability of continuous ibrutinib. The E1912 trial enrolled 529 treatment-naïve patients aged ≤70 years with chronic lymphocytic leukemia (CLL). Patients were randomly assigned (2:1 ratio) to receive IR or 6 cycles of FCR. With a median follow-up of 5.8 years, median progression-free survival (PFS) is superior for IR (hazard ratio [HR], 0.37; P < .001). IR improved PFS relative to FCR in patients with both immunoglobulin heavy chain variable region (IGHV) gene mutated CLL (HR: 0.27; P < .001) and IGHV unmutated CLL (HR: 0.27; P < .001). Among the 354 patients randomized to IR, 214 (60.5%) currently remain on ibrutinib. Among the 138 IR-treated patients who discontinued treatment, 37 (10.5% of patients who started IR) discontinued therapy due to disease progression or death, 77 (21.9% of patients who started IR) discontinued therapy for adverse events (AEs)/complications, and 24 (6.8% of patients who started IR) withdrew for other reasons. Progression was uncommon among patients able to remain on ibrutinib. The median time from ibrutinib discontinuation to disease progression or death among those who discontinued treatment for a reason other than progression was 25 months. Sustained improvement in overall survival (OS) was observed for patients in the IR arm (HR, 0.47; P = .018). In conclusion, IR therapy offers superior PFS relative to FCR in patients with IGHV mutated or unmutated CLL, as well as superior OS. Continuous ibrutinib therapy is tolerated beyond 5 years in the majority of CLL patients. This trial was registered at www.clinicaltrials.gov as #NCT02048813.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adenine/analogs & derivatives , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cyclophosphamide/adverse effects , Disease Progression , Humans , Immunoglobulin Variable Region , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Piperidines , Rituximab/therapeutic use , Treatment OutcomeABSTRACT
The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe Coronavirus disease 2019 (COVID-19). We tested ORF8 ex vivo on peripheral blood mononuclear cells from 26 anonymous healthy blood donors and measured intracellular cytokine/ chemokine levels in monocytes by flow cytometry. The percentage of positive monocyte staining in the sample and change in mean fluorescence intensity (ΔMFI) after ORF8 were used to calculate the adjusted MFI for each cytokine. We then tested pre-COVID-19 peripheral blood mononuclear cell samples from 60 chronic lymphocytic leukemia (CLL) patients who subsequently developed COVID-19 infection. Severe COVID-19 was defined as hospitalization due to COVID-19. In the 26 normal donor samples, the adjusted MFI for interleukin (IL)-1ß, IL-6, IL-8, and CCL-2 were significantly different with ORF8 stimulation versus controls. We next analyzed monocytes from pre-COVID-19 PBMC samples from 60 CLL patients. The adjusted MFI to ORF8 stimulation of monocyte intracellular IL-1ß was associated with severe COVID-19 and a reactive ORF8 monocyte response was defined as an IL-1ß adjusted MFI ≥0.18 (sensitivity 67%, specificity 75%). The median time to hospitalization after infection in CLL patients with a reactive ORF8 response was 12 days versus not reached for patients with a non-reactive ORF8 response with a hazard ratio of 7.7 (95% confidence interval: 2.4-132; P=0.005). These results provide new insight on the monocyte inflammatory response to virus with implications in a broad range of disorders involving monocytes.
Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Monocytes , SARS-CoV-2 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/complications , COVID-19/immunology , COVID-19/blood , COVID-19/complications , Male , Monocytes/metabolism , Monocytes/immunology , Monocytes/pathology , Female , Middle Aged , Aged , Viral Proteins , Cytokines/metabolism , Aged, 80 and over , AdultABSTRACT
The utility of the chronic lymphocytic leukemia-international prognostic index (CLL-IPI) in predicting outcomes of individuals with Rai 0 stage CLL and monoclonal B-cell lymphocytosis (MBL) is unclear. We identified 969 individuals (415 MBL and 554 Rai 0 CLL; median age, 64 years; 65% men) seen at Mayo Clinic between 1 January 2001 and 1 October 2018, and ascertained time to first therapy (TTFT) and overall survival (OS). After a median follow up of 7 years, the risk of disease progression needing therapy was 2.9%/y for MBL (median, not reached) and 5%/y for Rai 0 CLL (median, 10.4 years). Among patients with low, intermediate, and high/very high-risk CLL-IPI risk groups, the estimated 5-year risk of TTFT was 13.5%, 30%, and 58%, respectively, P< .0001 (c-statistic = 0.69); and the estimated 5-year OS was 96.3%, 91.5%, and 76%, respectively, P< .0001 (c-statistic = 0.65). In a multivariable analysis of absolute B-cell count with individual factors of the CLL-IPI, the absolute B-cell count was associated with shorter TTFT (hazard ratio [HR] for each 10 × 109/L increase: 1.31; P< .0001) and shorter OS (HR: 1.1; P = .02). The OS of the entire cohort was similar to that of the age- and sex-matched general population of Minnesota (P = .17), although Rai 0 CLL patients with high and very high-risk CLL-IPI score had significantly shorter OS (P= .01 and P= .0001, respectively). The results of this study demonstrate the ability of CLL-IPI to predict time from diagnosis to first treatment (an end point not affected by therapy) in a large cohort of patients whose only manifestation of disease is a circulating clonal lymphocyte population.
Subject(s)
B-Lymphocytes/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocytosis/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Multivariate Analysis , Prognosis , Proportional Hazards Models , Risk Factors , Survival AnalysisABSTRACT
E1912 was a randomized phase 3 trial comparing indefinite ibrutinib plus 6 cycles of rituximab (IR) to 6 cycles of fludarabine, cyclophosphamide, and rituximab (FCR) in untreated younger patients with CLL. We describe measurable residual disease (MRD) levels in E1912 over time and correlate them with clinical outcome. Undetectable MRD rates (<1 CLL cell per 104 leukocytes) were 29.1%, 30.3%, 23.4%, and 8.6% at 3, 12, 24, and 36 months for FCR, and significantly lower at 7.9%, 4.2%, and 3.7% at 12, 24, and 36 months for IR, respectively. Undetectable MRD at 3, 12, 24, and 36 months was associated with longer progression-free survival (PFS) in the FCR arm, with hazard ratios (MRD detectable/MRD undetectable) of 4.29 (95% confidence interval [CI], 1.89-9.71), 3.91 (95% CI, 1.39-11.03), 14.12 (95% CI, 1.78-111.73), and not estimable (no events among those with undetectable MRD), respectively. In the IR arm, patients with detectable MRD did not have significantly worse PFS compared with those in whom MRD was undetectable; however, PFS was longer in those with MRD levels <10-1 than in those with MRD levels above this threshold. Our observations provide additional support for the use of MRD as a surrogate end point for PFS in patients receiving FCR. In patients on indefinite ibrutinib-based therapy, PFS did not differ significantly by undetectable MRD status, whereas those with MRD <10-1 tended to have longer PFS, although continuation of ibrutinib would very likely be necessary to maintain treatment efficacy.
Subject(s)
Adenine/analogs & derivatives , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Neoplasm, Residual/diagnosis , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adenine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide/therapeutic use , Female , Humans , Male , Middle Aged , Prognosis , Progression-Free Survival , Rituximab/therapeutic use , Treatment Outcome , Vidarabine/analogs & derivatives , Vidarabine/therapeutic useABSTRACT
Cancer treatment has been transformed by checkpoint blockade therapies, with the highest anti-tumor activity of anti-programmed death 1 (PD-1) antibody therapy seen in Hodgkin lymphoma. Disappointingly, response rates have been low in the non-Hodgkin lymphomas, with no activity seen in relapsed/refractory chronic lymphocytic leukemia (CLL) with PD-1 blockade. Thus, identifying more powerful combination therapy is required for these patients. Here, we preclinically demonstrate enhanced anti-CLL activity following combinational therapy with anti-PD-1 or anti-PD-1 ligand (PD-L1) and avadomide, a cereblon E3 ligase modulator (CELMoD). Avadomide induced type I and II interferon (IFN) signaling in patient T cells, triggering a feedforward cascade of reinvigorated T-cell responses. Immune modeling assays demonstrated that avadomide stimulated T-cell activation, chemokine expression, motility and lytic synapses with CLL cells, as well as IFN-inducible feedback inhibition through upregulation of PD-L1. Patient-derived xenograft tumors treated with avadomide were converted to CD8+ T cell-inflamed tumor microenvironments that responded to anti-PD-L1/PD-1-based combination therapy. Notably, clinical analyses showed increased PD-L1 expression on T cells, as well as intratumoral expression of chemokine signaling genes in B-cell malignancy patients receiving avadomide-based therapy. These data illustrate the importance of overcoming a low inflammatory T-cell state to successfully sensitize CLL to checkpoint blockade-based combination therapy.
Subject(s)
Immune Checkpoint Inhibitors/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Activation/drug effects , Piperidones/pharmacology , Quinazolinones/pharmacology , T-Lymphocytes/drug effects , Animals , Antineoplastic Agents/pharmacology , Humans , Immunotherapy/methods , Interferons/immunology , Mice , Signal Transduction/drug effects , T-Lymphocytes/immunology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor AssaysABSTRACT
Chronic lymphocytic lymphoma (CLL) has one of the highest familial risks among cancers. Monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, has a higher prevalence (13%-18%) in families with 2 or more members with CLL compared with the general population (5%-12%). Although, the rate of progression to CLL for high-count MBLs (clonal B-cell count ≥500/µL) is â¼1% to 5%/y, no low-count MBLs have been reported to progress to date. We report the incidence and natural history of MBL in relatives from CLL families. In 310 CLL families, we screened 1045 relatives for MBL using highly sensitive flow cytometry and prospectively followed 449 of them. MBL incidence was directly age- and sex-adjusted to the 2010 US population. CLL cumulative incidence was estimated using Kaplan-Meier survival curves. At baseline, the prevalence of MBL was 22% (235/1045 relatives). After a median follow-up of 8.1 years among 449 relatives, 12 individuals progressed to CLL with a 5-year cumulative incidence of 1.8%. When considering just the 139 relatives with low-count MBL, the 5-year cumulative incidence increased to 5.7%. Finally, 264 had no MBL at baseline, of whom 60 individuals subsequently developed MBL (2 high-count and 58 low-count MBLs) with an age- and sex-adjusted incidence of 3.5% after a median of 6 years of follow-up. In a screening cohort of relatives from CLL families, we reported progression from normal-count to low-count MBL to high-count MBL to CLL, demonstrating that low-count MBL precedes progression to CLL. We estimated a 1.1% annual rate of progression from low-count MBL, which is in excess of that in the general population.
Subject(s)
B-Lymphocytes/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Lymphocytosis/complications , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Incidence , Kaplan-Meier Estimate , Lymphocytosis/diagnosis , Lymphocytosis/etiology , Lymphocytosis/pathology , Male , Middle Aged , PedigreeABSTRACT
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. It has a strong genetic basis, showing a ~ 8-fold increased risk of CLL in first-degree relatives. Genome-wide association studies (GWAS) have identified 41 risk variants across 41 loci. However, for a majority of the loci, the functional variants and the mechanisms underlying their causal roles remain undefined. Here, we examined the genetic and epigenetic features associated with 12 index variants, along with any correlated (r2 ≥ 0.5) variants, at the CLL risk loci located outside of gene promoters. Based on publicly available ChIP-seq and chromatin accessibility data as well as our own ChIP-seq data from CLL patients, we identified six candidate functional variants at six loci and at least two candidate functional variants at each of the remaining six loci. The functional variants are predominantly located within enhancers or super-enhancers, including bi-directionally transcribed enhancers, which are often restricted to immune cell types. Furthermore, we found that, at 78% of the functional variants, the alternative alleles altered the transcription factor binding motifs or histone modifications, indicating the involvement of these variants in the change of local chromatin state. Finally, the enhancers carrying functional variants physically interacted with genes enriched in the type I interferon signaling pathway, apoptosis, or TP53 network that are known to play key roles in CLL. These results support the regulatory roles for inherited noncoding variants in the pathogenesis of CLL.
Subject(s)
Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Alleles , Chromatin/genetics , Epigenesis, Genetic/genetics , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Polymorphism, Single Nucleotide/genetics , Protein Binding , Risk Factors , Tumor Suppressor Protein p53/geneticsABSTRACT
Patients with chronic lymphocytic leukaemia (CLL) disease progression on ibrutinib or after sequential ibrutinib and venetoclax-based treatments (double-refractory) have poor outcomes. In this retrospective study, we analysed outcomes with combined ibrutinib and venetoclax treatment in these groups of patients. The median treatment-free and overall survival for 22 patients with prior progression on ibrutinib (venetoclax-naïve) were 23.7 and 47.1 months respectively. In 11 patients with double-refractory CLL, the median treatment-free and overall survival were 11.2 and 27.0 months respectively. The combination of ibrutinib and venetoclax may help bridge the current gap in options for patients with disease refractory to the most commonly used novel agents.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adenine/analogs & derivatives , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Piperidines , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Retrospective Studies , SulfonamidesABSTRACT
BACKGROUND: Data regarding the efficacy of treatment with ibrutinib-rituximab, as compared with standard chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab, in patients with previously untreated chronic lymphocytic leukemia (CLL) have been limited. METHODS: In a phase 3 trial, we randomly assigned (in a 2:1 ratio) patients 70 years of age or younger with previously untreated CLL to receive either ibrutinib and rituximab for six cycles (after a single cycle of ibrutinib alone), followed by ibrutinib until disease progression, or six cycles of chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab. The primary end point was progression-free survival, and overall survival was a secondary end point. We report the results of a planned interim analysis. RESULTS: A total of 529 patients underwent randomization (354 patients to the ibrutinib-rituximab group, and 175 to the chemoimmunotherapy group). At a median follow-up of 33.6 months, the results of the analysis of progression-free survival favored ibrutinib-rituximab over chemoimmunotherapy (89.4% vs. 72.9% at 3 years; hazard ratio for progression or death, 0.35; 95% confidence interval [CI], 0.22 to 0.56; P<0.001), and the results met the protocol-defined efficacy threshold for the interim analysis. The results of the analysis of overall survival also favored ibrutinib-rituximab over chemoimmunotherapy (98.8% vs. 91.5% at 3 years; hazard ratio for death, 0.17; 95% CI, 0.05 to 0.54; P<0.001). In a subgroup analysis involving patients without immunoglobulin heavy-chain variable region (IGHV) mutation, ibrutinib-rituximab resulted in better progression-free survival than chemoimmunotherapy (90.7% vs. 62.5% at 3 years; hazard ratio for progression or death, 0.26; 95% CI, 0.14 to 0.50). The 3-year progression-free survival among patients with IGHV mutation was 87.7% in the ibrutinib-rituximab group and 88.0% in the chemoimmunotherapy group (hazard ratio for progression or death, 0.44; 95% CI, 0.14 to 1.36). The incidence of adverse events of grade 3 or higher (regardless of attribution) was similar in the two groups (in 282 of 352 patients [80.1%] who received ibrutinib-rituximab and in 126 of 158 [79.7%] who received chemoimmunotherapy), whereas infectious complications of grade 3 or higher were less common with ibrutinib-rituximab than with chemoimmunotherapy (in 37 patients [10.5%] vs. 32 [20.3%], P<0.001). CONCLUSIONS: The ibrutinib-rituximab regimen resulted in progression-free survival and overall survival that were superior to those with a standard chemoimmunotherapy regimen among patients 70 years of age or younger with previously untreated CLL. (Funded by the National Cancer Institute and Pharmacyclics; E1912 ClinicalTrials.gov number, NCT02048813.).
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Rituximab/administration & dosage , Adenine/analogs & derivatives , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Female , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Piperidines , Progression-Free Survival , Pyrazoles/adverse effects , Pyrimidines/adverse effects , Rituximab/adverse effects , Vidarabine/administration & dosage , Vidarabine/adverse effects , Vidarabine/analogs & derivativesABSTRACT
Monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL) are clonal B-cell disorders associated with an increased risk of infections and impaired vaccination responses. We investigated the immunogenicity of recombinant zoster vaccine (RZV) in these patients. Individuals with MBL/untreated CLL and Bruton tyrosine kinase inhibitor (BTKi)-treated CLL patients were given two doses of RZV separated by 2 months. Responses assessed at 3 and 12 months from the first dose of RZV by an anti-glycoprotein E ELISA antibody assay and by dual-color Interferon-γ and Interleukin-2FLUOROSPOT assays were compared to historic controls matched by age and sex. About 62 patients (37 MBL/untreated CLL and 25 BTKi-treated CLL) were enrolled with a median age of 68 years at vaccination. An antibody response at 3 months was seen in 45% of participants, which was significantly lower compared to historic controls (63%, p = .03). The antibody response did not significantly differ between MBL/untreated CLL and BTKi-treated CLL (51% vs. 36%, respectively, p = .23). The CD4+ T-cell response to vaccination was significantly lower in study participants compared to controls (54% vs. 96%, p < .001), mainly due to lower responses among BTKi-treated patients compared to untreated MBL/CLL (32% vs. 73%, p = .008). Overall, only 29% of participants achieved combined antibody and cellular responses to RZV. Among participants with response assessment at 12 months (n = 47), 24% had antibody titers below the response threshold. Hypogammaglobulinemia and BTKi therapy were associated with reduced T-cell responses in a univariate analysis. Strategies to improve vaccine response to RZV among MBL/CLL patients are needed.
Subject(s)
Herpes Zoster Vaccine/therapeutic use , Herpes Zoster/prevention & control , Immunity, Cellular , Immunity, Humoral , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Lymphocytosis/complications , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Female , Herpes Zoster/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocytosis/immunology , Male , Middle AgedABSTRACT
Chimeric antigen receptor (CAR) T cell therapy has yielded unprecedented outcomes in some patients with hematological malignancies; however, inhibition by the tumor microenvironment has prevented the broader success of CART cell therapy. We used chronic lymphocytic leukemia (CLL) as a model to investigate the interactions between the tumor microenvironment and CART cells. CLL is characterized by an immunosuppressive microenvironment, an abundance of systemic extracellular vesicles (EVs), and a relatively lower durable response rate to CART cell therapy. In this study, we characterized plasma EVs from untreated CLL patients and identified their leukemic cell origin. CLL-derived EVs were able to induce a state of CART cell dysfunction characterized by phenotypical, functional, and transcriptional changes of exhaustion. We demonstrate that, specifically, PD-L1+ CLL-derived EVs induce CART cell exhaustion. In conclusion, we identify an important mechanism of CART cell exhaustion induced by EVs from CLL patients.
Subject(s)
B7-H1 Antigen/blood , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , B7-H1 Antigen/genetics , Cell Line, Tumor , Extracellular Vesicles/genetics , Extracellular Vesicles/immunology , Female , Humans , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Receptors, Antigen, T-Cell/blood , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/drug effectsABSTRACT
Non-steroidal anti-inflammatory drugs (NSAIDs) and statin drugs may protect against the development of non-Hodgkin lymphoma (NHL), but data are limited, particularly for NHL subtypes. Furthermore, some in vitro, animal and epidemiologic data suggest there may be a synergistic effect of these two agents, but there has been no test of this hypothesis in NHL. We evaluated the self-reported use of NSAIDs and statins in a clinic-based study of 1703 NHL patients and 2199 frequency-matched controls. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for potential confounding variables. We observed an inverse association of regular use of low-dose aspirin with risk of NHL (OR = 0.82; 95% CI 0.70-0.96) that was stronger with longer duration of use (P < .01). There were no associations for use of regular or extra-strength aspirin, ibuprofen, other NSAIDs, statins or other cholesterol-lowering drugs with NHL risk, while an inverse association with COX-2 inhibitors was equivocal. There was also no interaction of low-dose aspirin and statins on NHL risk. Inverse associations of similar magnitude to all NHL were observed for regular use of low-dose aspirin with diffuse large B-cell, follicular, marginal zone and all other lymphomas, although not all associations were statistically significant. In conclusion, low-dose aspirin but not regular/extra strength aspirin, other NSAIDs or statin use was associated with lower risk of NHL. Beyond the potential for the primary prevention of NHL, these data also point to a role of anti-platelet or other effects of low-dose aspirin in lymphomagenesis that warrant follow-up.
Subject(s)
Alcohol Drinking/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Lymphoma, Non-Hodgkin/epidemiology , Lymphoma, Non-Hodgkin/etiology , Adult , Aged , Female , Follow-Up Studies , Humans , Incidence , Lymphoma, Non-Hodgkin/pathology , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors , United States/epidemiologyABSTRACT
Chimeric antigen receptor T (CAR-T) cell therapy is a new pillar in cancer therapeutics; however, its application is limited by the associated toxicities. These include cytokine release syndrome (CRS) and neurotoxicity. Although the IL-6R antagonist tocilizumab is approved for treatment of CRS, there is no approved treatment of neurotoxicity associated with CD19-targeted CAR-T (CART19) cell therapy. Recent data suggest that monocytes and macrophages contribute to the development of CRS and neurotoxicity after CAR-T cell therapy. Therefore, we investigated neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential strategy to manage CART19 cell-associated toxicities. In this study, we show that GM-CSF neutralization with lenzilumab does not inhibit CART19 cell function in vitro or in vivo. Moreover, CART19 cell proliferation was enhanced and durable control of leukemic disease was maintained better in patient-derived xenografts after GM-CSF neutralization with lenzilumab. In a patient acute lymphoblastic leukemia xenograft model of CRS and neuroinflammation (NI), GM-CSF neutralization resulted in a reduction of myeloid and T cell infiltration in the central nervous system and a significant reduction in NI and prevention of CRS. Finally, we generated GM-CSF-deficient CART19 cells through CRISPR/Cas9 disruption of GM-CSF during CAR-T cell manufacturing. These GM-CSFk/o CAR-T cells maintained normal functions and had enhanced antitumor activity in vivo, as well as improved overall survival, compared with CART19 cells. Together, these studies illuminate a novel approach to abrogate NI and CRS through GM-CSF neutralization, which may potentially enhance CAR-T cell function. Phase 2 studies with lenzilumab in combination with CART19 cell therapy are planned.
Subject(s)
Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Immune System Diseases/therapy , Inflammation/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/therapeutic use , Receptors, Chimeric Antigen/immunology , Animals , Antibodies, Neutralizing/pharmacology , Cell Proliferation , Humans , Immune System Diseases/immunology , Immune System Diseases/metabolism , Inflammation/immunology , Inflammation/metabolism , Macrophages/drug effects , Macrophages/immunology , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Chimeric Antigen/metabolism , Syndrome , Transplantation, Heterologous , Tumor Cells, Cultured , Xenograft Model Antitumor AssaysABSTRACT
Alterations in global DNA methylation patterns are a major hallmark of cancer and represent attractive biomarkers for personalized risk stratification. Chronic lymphocytic leukemia (CLL) risk stratification studies typically focus on time to first treatment (TTFT), time to progression (TTP) after treatment, and overall survival (OS). Whereas TTFT risk stratification remains similar over time, TTP and OS have changed dramatically with the introduction of targeted therapies, such as the Bruton tyrosine kinase inhibitor ibrutinib. We have shown that genome-wide DNA methylation patterns in CLL are strongly associated with phenotypic differentiation and patient outcomes. Here, we developed a novel assay, termed methylation-iPLEX (Me-iPLEX), for high-throughput quantification of targeted panels of single cytosine guanine dinucleotides from multiple independent loci. Me-iPLEX was used to classify CLL samples into 1 of 3 known epigenetic subtypes (epitypes). We examined the impact of epitype in 1286 CLL patients from 4 independent cohorts representing a comprehensive view of CLL disease course and therapies. We found that epitype significantly predicted TTFT and OS among newly diagnosed CLL patients. Additionally, epitype predicted TTP and OS with 2 common CLL therapies: chemoimmunotherapy and ibrutinib. Epitype retained significance after stratifying by biologically related biomarkers, immunoglobulin heavy chain mutational status, and ZAP70 expression, as well as other common prognostic markers. Furthermore, among several biological traits enriched between epitypes, we found highly biased immunogenetic features, including IGLV3-21 usage in the poorly characterized intermediate-programmed CLL epitype. In summary, Me-iPLEX is an elegant method to assess epigenetic signatures, including robust classification of CLL epitypes that independently stratify patient risk at diagnosis and time of treatment.