Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(3): e55762, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36597993

ABSTRACT

N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.


Subject(s)
Adenosine , Methyltransferases , Adenosine/metabolism , Methyltransferases/genetics , Homeostasis
2.
J Immunol ; 210(1): 72-81, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36426999

ABSTRACT

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Nucleocapsid Proteins , Viremia , Beclin-1 , Rhabdoviridae/physiology , Lysosomes , Autophagy
3.
BMC Med ; 22(1): 15, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38221612

ABSTRACT

BACKGROUND: There is increasing evidence for the role of environmental factors and exposure to the natural environment on a wide range of health outcomes. Whether exposure to green space, blue space, and the natural environment (GBN) is associated with risk of psychiatric disorders in middle-aged and older adults has not been prospectively examined. METHODS: Longitudinal data from the UK biobank was used. At the study baseline (2006-2010), 363,047 participants (women: 53.4%; mean age 56.7 ± 8.1 years) who had not been previously diagnosed with any psychiatric disorder were included. Follow-up was achieved by collecting records from hospitals and death registers. Measurements of green and blue space modeled from land use data and natural environment from Land Cover Map were assigned to the residential address for each participant. Cox proportional hazard models with adjustment for potential confounders were used to explore the longitudinal associations between GBN and any psychiatric disorder and then by specific psychiatric disorders (dementia, substance abuse, psychotic disorder, depression, and anxiety) in middle-aged and older adults. RESULTS: During an average follow-up of 11.5 ± 2.8 years, 49,865 individuals were diagnosed with psychiatric disorders. Compared with the first tertile (lowest) of exposure, blue space at 300 m buffer [hazard ratio (HR): 0.973, 95% confidence interval (CI): 0.952-0.994] and natural environment at 300 m buffer (HR: 0.970, 95% CI: 0.948-0.992) and at 1000 m buffer (HR: 0.975, 95% CI: 0.952-0.999) in the third tertile (highest) were significantly associated with lower risk of incident psychiatric disorders, respectively. The risk of incident dementia was statistically decreased when exposed to the third tertile (highest) of green space and natural environment at 1000 m buffer. The third tertile (highest) of green space at 300 m and 1000 m buffer and natural environment at 300 m and 1000 m buffer was associated with a reduction of 30.0%, 31.8%, 21.7%, and 30.3% in the risk of developing a psychotic disorder, respectively. Subgroup analysis suggested that the elderly, men, and those living with some comorbid conditions may derive greater benefits associated with exposure to GBN. CONCLUSIONS: This study suggests that GBN has significant benefits for lowering the risk of psychiatric disorders in middle-aged and older adults. Future studies are warranted to validate these findings and to understand the potential mechanistic pathways underpinning these novel findings.


Subject(s)
Dementia , UK Biobank , Male , Aged , Middle Aged , Humans , Female , Incidence , Biological Specimen Banks , Environment , Dementia/epidemiology , Dementia/prevention & control
4.
J Virol ; 97(7): e0053223, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37367226

ABSTRACT

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Subject(s)
Fish Diseases , Interferon Regulatory Factors , Mitogen-Activated Protein Kinases , Rhabdoviridae Infections , Ubiquitination , Viral Structural Proteins , Animals , Fish Diseases/immunology , Fish Diseases/virology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Rhabdoviridae/genetics , Rhabdoviridae/immunology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , Zebrafish/genetics , Zebrafish/immunology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Protein Stability , Proteolysis , Viral Structural Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Up-Regulation
5.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37882518

ABSTRACT

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Subject(s)
DNA Virus Infections , Immunity, Innate , Interferons , RNA Virus Infections , Zebrafish Proteins , Zebrafish , Animals , DNA Virus Infections/immunology , DNA Virus Infections/virology , Interferons/antagonists & inhibitors , Interferons/biosynthesis , Signal Transduction , Zebrafish/immunology , Zebrafish/metabolism , Zebrafish/virology , RNA Virus Infections/immunology , RNA Virus Infections/virology , Feedback, Physiological , Zebrafish Proteins/immunology , Zebrafish Proteins/metabolism
6.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38386917

ABSTRACT

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

7.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35418468

ABSTRACT

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Animals , DNA Viruses , Phosphotransferases (Alcohol Group Acceptor) , Rhabdoviridae , Ubiquitination , Viral Proteins , Viremia , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
8.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Article in English | MEDLINE | ID: mdl-38225393

ABSTRACT

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Subject(s)
Alzheimer Disease , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Disease Models, Animal , Transient Receptor Potential Channels , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Autophagy/drug effects , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Signal Transduction/drug effects , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics
9.
Mol Ther ; 31(2): 585-598, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-38556635

ABSTRACT

Inflammatory bowel disease (IBD) is a predisposing factor for colitis-associated cancer (CAC). The association between bile acids and the gut microbiota has been demonstrated in colon neoplasia; however, the effect of ursodeoxycholic acid (UDCA) on gut microbiota alteration in development of colitis and CAC is unknown. Our analysis of publicly available datasets demonstrated the association of UDCA treatment and accumulation of Akkermansia. UDCA-mediated alleviation of DSS-induced colitis was microbially dependent. UDCA treatment significantly upregulated Akkermansia colonization in a mouse model. Colonization of Akkermansia was associated with enhancement of the mucus layer upon UDCA treatment as well as activation of bile acid receptors in macrophages. UDCA played a role in CAC prevention and treatment in the AOM-DSS and ApcMin/+-DSS models through downregulation of inflammation and accumulation of Akkermansia. This study suggests that UDCA intervention could reshape intestinal gut homeostasis, facilitating colonization of Akkermansia and preventing and treating colitis and CAC.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Ursodeoxycholic Acid/adverse effects , Colitis-Associated Neoplasms/complications , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Colon
10.
Radiology ; 307(5): e222223, 2023 06.
Article in English | MEDLINE | ID: mdl-37278629

ABSTRACT

Background Deep learning (DL) models can potentially improve prognostication of rectal cancer but have not been systematically assessed. Purpose To develop and validate an MRI DL model for predicting survival in patients with rectal cancer based on segmented tumor volumes from pretreatment T2-weighted MRI scans. Materials and Methods DL models were trained and validated on retrospectively collected MRI scans of patients with rectal cancer diagnosed between August 2003 and April 2021 at two centers. Patients were excluded from the study if there were concurrent malignant neoplasms, prior anticancer treatment, incomplete course of neoadjuvant therapy, or no radical surgery performed. The Harrell C-index was used to determine the best model, which was applied to internal and external test sets. Patients were stratified into high- and low-risk groups based on a fixed cutoff calculated in the training set. A multimodal model was also assessed, which used DL model-computed risk score and pretreatment carcinoembryonic antigen level as input. Results The training set included 507 patients (median age, 56 years [IQR, 46-64 years]; 355 men). In the validation set (n = 218; median age, 55 years [IQR, 47-63 years]; 144 men), the best algorithm reached a C-index of 0.82 for overall survival. The best model reached hazard ratios of 3.0 (95% CI: 1.0, 9.0) in the high-risk group in the internal test set (n = 112; median age, 60 years [IQR, 52-70 years]; 76 men) and 2.3 (95% CI: 1.0, 5.4) in the external test set (n = 58; median age, 57 years [IQR, 50-67 years]; 38 men). The multimodal model further improved the performance, with a C-index of 0.86 and 0.67 for the validation and external test set, respectively. Conclusion A DL model based on preoperative MRI was able to predict survival of patients with rectal cancer. The model could be used as a preoperative risk stratification tool. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Langs in this issue.


Subject(s)
Deep Learning , Rectal Neoplasms , Male , Humans , Middle Aged , Retrospective Studies , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Magnetic Resonance Imaging , Risk Factors
11.
Small ; 19(48): e2304307, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37534380

ABSTRACT

Electrochemical water splitting in acidic media is one of the most promising hydrogen production technologies, yet its practical applications in proton exchange membrane (PEM) water electrolyzers are limited by the anodic oxygen evolution reaction (OER). Iridium (Ir)-based materials are considered as the state-of-the-art catalysts for acidic OER due to their good stability under harsh acidic conditions. However, their activities still have much room for improvement. Two-dimensional (2D) materials are full of the advantages of high-surface area, unique electrical properties, facile surface modification, and good stability, making the development of 2D Ir-based catalysts more attractive for achieving high catalytic performance. In this review, first, the unique advantages of 2D catalysts for electrocatalysis are reviewed. Thereafter, the classification, synthesis methods, and recent OER achievements of 2D Ir-based materials, including pure metals, alloys, oxides, and perovskites are introduced. Finally, the prospects and challenges of developing 2D Ir-based catalysts for future acidic OER are discussed.

12.
Phys Rev Lett ; 131(17): 175101, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955489

ABSTRACT

We put forward a novel method for producing ultrarelativistic high-density high-polarization positrons through a single-shot interaction of a strong laser with a tilted solid foil. In our method, the driving laser ionizes the target, and the emitted electrons are accelerated and subsequently generate abundant γ photons via the nonlinear Compton scattering, dominated by the laser. These γ photons then generate polarized positrons via the nonlinear Breit-Wheeler process, dominated by a strong self-generated quasistatic magnetic field B^{S}. We find that placing the foil at an appropriate angle can result in a directional orientation of B^{S}, thereby polarizing positrons. Manipulating the laser polarization direction can control the angle between the γ photon polarization and B^{S}, significantly enhancing the positron polarization degree. Our spin-resolved quantum electrodynamics particle-in-cell simulations demonstrate that employing a laser with a peak intensity of about 10^{23} W/cm^{2} can obtain dense (≳10^{18} cm^{-3}) polarized positrons with an average polarization degree of about 70% and a yield of above 0.1 nC per shot. Moreover, our method is feasible using currently available or upcoming laser facilities and robust with respect to the laser and target parameters. Such high-density high-polarization positrons hold great significance in laboratory astrophysics, high-energy physics, and new physics beyond the standard model.

13.
Psychol Med ; : 1-10, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712399

ABSTRACT

The COVID-19 pandemic has had a profound impact on the mental health of healthcare workers (HCWs). We aimed to identify the factors associated with depression among HCWs during the pandemic. We conducted literature search using eight electronic databases up to July 27 2022. Observational studies with more than 200 participants investigating correlates of depression in HCWs after COVID-19 outbreak were included. We used fixed- and random-effects models to pool odds ratios (ORs) across studies, and Cochran's chi-squared test and I 2 statistics to assess study heterogeneity. Publication bias was evaluated by funnel plots. Thirty-five studies involving 44,362 HCWs met the inclusion criteria. Female (OR=1.50, 95% CI [1.23,1.84]), single (OR=1.36, 95% CI [1.21,1.54]), nurse (OR=1.69, 95% CI [1.28,2.25]), history of mental diseases (OR=2.53, 95% CI [1.78,3.58]), frontline (OR=1.79, 95% CI [1.38,2.32]), health anxiety due to COVID-19 (OR=1.88, 95% CI [1.29,2.76]), working in isolation wards (OR=1.98, 95% CI [1.38,2.84]), and insufficient personal protective equipment (OR=1.49, 95% CI [1.33,1.67]) were associated with increased risk of depression. Instead, HCWs with a positive professional prospect (OR=0.34, 95% CI [0.24,0.49]) were less likely to be depressed. This meta-analysis provides up-to-date evidence on the factors linked to depression among HCWs during the COVID-19 pandemic. Given the persistent threats posed by COVID-19, early screening is crucial for the intervention and prevention of depression in HCWs.

14.
Dis Colon Rectum ; 66(12): e1195-e1206, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37682775

ABSTRACT

BACKGROUND: Accurate prediction of response to neoadjuvant chemoradiotherapy is critical for subsequent treatment decisions for patients with locally advanced rectal cancer. OBJECTIVE: To develop and validate a deep learning model based on the comparison of paired MRI before and after neoadjuvant chemoradiotherapy to predict pathological complete response. DESIGN: By capturing the changes from MRI before and after neoadjuvant chemoradiotherapy in 638 patients, we trained a multitask deep learning model for response prediction (DeepRP-RC) that also allowed simultaneous segmentation. Its performance was independently tested in an internal and 3 external validation sets, and its prognostic value was also evaluated. SETTINGS: Multicenter study. PATIENTS: We retrospectively enrolled 1201 patients diagnosed with locally advanced rectal cancer who underwent neoadjuvant chemoradiotherapy before total mesorectal excision. Patients had been treated at 1 of 4 hospitals in China between January 2013 and December 2020. MAIN OUTCOME MEASURES: The main outcome was the accuracy of predicting pathological complete response, measured as the area under receiver operating curve for the training and validation data sets. RESULTS: DeepRP-RC achieved high performance in predicting pathological complete response after neoadjuvant chemoradiotherapy, with area under the curve values of 0.969 (0.942-0.996), 0.946 (0.915-0.977), 0.943 (0.888-0.998), and 0.919 (0.840-0.997) for the internal and 3 external validation sets, respectively. DeepRP-RC performed similarly well in the subgroups defined by receipt of radiotherapy, tumor location, T/N stages before and after neoadjuvant chemoradiotherapy, and age. Compared with experienced radiologists, the model showed substantially higher performance in pathological complete response prediction. The model was also highly accurate in identifying the patients with poor response. Furthermore, the model was significantly associated with disease-free survival independent of clinicopathological variables. LIMITATIONS: This study was limited by its retrospective design and absence of multiethnic data. CONCLUSIONS: DeepRP-RC could be an accurate preoperative tool for pathological complete response prediction in rectal cancer after neoadjuvant chemoradiotherapy. UN SISTEMA DE IA BASADO EN RESONANCIA MAGNTICA LONGITUDINAL PARA PREDECIR LA RESPUESTA PATOLGICA COMPLETA DESPUS DE LA TERAPIA NEOADYUVANTE EN EL CNCER DE RECTO UN ESTUDIO DE VALIDACIN MULTICNTRICO: ANTECEDENTES:La predicción precisa de la respuesta a la quimiorradioterapia neoadyuvante es fundamental para las decisiones de tratamiento posteriores para los pacientes con cáncer de recto localmente avanzado.OBJETIVO:Desarrollar y validar un modelo de aprendizaje profundo basado en la comparación de resonancias magnéticas pareadas antes y después de la quimiorradioterapia neoadyuvante para predecir la respuesta patológica completa.DISEÑO:Al capturar los cambios de las imágenes de resonancia magnética antes y después de la quimiorradioterapia neoadyuvante en 638 pacientes, entrenamos un modelo de aprendizaje profundo multitarea para la predicción de respuesta (DeepRP-RC) que también permitió la segmentación simultánea. Su rendimiento se probó de forma independiente en un conjunto de validación interna y tres externas, y también se evaluó su valor pronóstico.ESCENARIO:Estudio multicéntrico.PACIENTES:Volvimos a incluir retrospectivamente a 1201 pacientes diagnosticados con cáncer de recto localmente avanzado y sometidos a quimiorradioterapia neoadyuvante antes de la escisión total del mesorrecto. Eran de cuatro hospitales en China en el período entre enero de 2013 y diciembre de 2020.PRINCIPALES MEDIDAS DE RESULTADO:Los principales resultados fueron la precisión de la predicción de la respuesta patológica completa, medida como el área bajo la curva operativa del receptor para los conjuntos de datos de entrenamiento y validación.RESULTADOS:DeepRP-RC logró un alto rendimiento en la predicción de la respuesta patológica completa después de la quimiorradioterapia neoadyuvante, con valores de área bajo la curva de 0,969 (0,942-0,996), 0,946 (0,915-0,977), 0,943 (0,888-0,998), y 0,919 (0,840-0,997) para los conjuntos de validación interna y las tres externas, respectivamente. DeepRP-RC se desempeñó de manera similar en los subgrupos definidos por la recepción de radioterapia, la ubicación del tumor, los estadios T/N antes y después de la quimiorradioterapia neoadyuvante y la edad. En comparación con los radiólogos experimentados, el modelo mostró un rendimiento sustancialmente mayor en la predicción de la respuesta patológica completa. El modelo también fue muy preciso en la identificación de los pacientes con mala respuesta. Además, el modelo se asoció significativamente con la supervivencia libre de enfermedad independientemente de las variables clinicopatológicas.LIMITACIONES:Este estudio estuvo limitado por el diseño retrospectivo y la ausencia de datos multiétnicos.CONCLUSIONES:DeepRP-RC podría servir como una herramienta preoperatoria precisa para la predicción de la respuesta patológica completa en el cáncer de recto después de la quimiorradioterapia neoadyuvante. (Traducción-Dr. Felipe Bellolio ).


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Retrospective Studies , Artificial Intelligence , Chemoradiotherapy/adverse effects , Rectal Neoplasms/therapy , Rectal Neoplasms/drug therapy , Magnetic Resonance Imaging , Neoplasm Staging
15.
Cell Biol Toxicol ; 39(6): 2467-2499, 2023 12.
Article in English | MEDLINE | ID: mdl-37491594

ABSTRACT

The central nervous system regulates all aspects of physiology to some extent. Neurodegenerative diseases (NDDs) lead to the progressive loss and dysfunction of neurons, which are particularly evident in Alzheimer's disease, Parkinson's disease, and many other conditions. NDDs are multifactorial diseases with complex pathogeneses, and there has been a rapid increase in the prevalence of NDDs. However, none of these diseases can be cured, making the development of novel treatment strategies an urgent necessity. Numerous studies have indicated how pyroptosis induces inflammation and affects many aspects of NDD. Therefore, components related to pyroptosis are potential therapeutic candidates and are attracting increasing attention. Here, we review the role of pyroptosis in the pathogenesis of NDDs and potential treatment options. Additionally, several of the current drugs and relevant inhibitors are discussed. Through this article, we provide theoretical support for exploring new therapeutic targets and updating clinical treatment strategies for NDDs. Notably, pyroptosis, a recently widely studied mode of cell death, is still under-researched compared to other traditional forms of cell death. Moreover, the focus of research has been on the onset and progression of NDDs, and the lack of organ-specific target discovery and drug development is a common problem for many basic studies. This urgent problem requires scientists and companies worldwide to collaborate in order to develop more effective drugs against NDDs.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Pyroptosis , Parkinson Disease/metabolism , Drug Development
16.
Hepatobiliary Pancreat Dis Int ; 22(6): 632-638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35331650

ABSTRACT

BACKGROUND: Endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) is a widely used modality for acquiring various target samples, but its efficacy in gallbladder masses is unknown. The aim of this retrospective study was to evaluate the efficacy and safety of EUS-FNB in patients with gallbladder masses. METHODS: The study samples were composed of patients from March 2015 to July 2019 who needed to identify the nature of gallbladder masses through EUS-FNB. The outcomes of this study were the adequacy of specimens, diagnostic yields, technical feasibility, and adverse events of the EUS-FNB in gallbladder masses. RESULTS: A total of 27 consecutive patients with a median age of 58 years were included in this study. The 22-gauge FNB needle was feasible in all lesions. The median follow-up period of the patients was 294 days. The specimens sufficient for diagnosis account for 89% (24/27) and 93% (25/27) in cytology and histology, respectively. The overall diagnostic yields for malignancy showed the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 95.45% [95% confidence interval (CI): 75.12%-99.76%], 100% (95% CI: 46.29%-100%), 100% (95% CI: 80.76%-100%), 83.33% (95% CI: 36.48%-99.12%), and 96.30% (95% CI: 80.20%-99.99%), respectively. The subgroup analysis revealed that FNB could obtain sufficient specimens and high diagnostic yields in both gallbladder mass < 20.5 mm group and ≥ 20.5 mm group. One patient experienced mild abdominal pain after the procedure and recovered within one day. CONCLUSIONS: EUS-FNB is a reasonable diagnostic tool for the pretreatment diagnosis of patients with gallbladder masses, especially for patients who may miss the opportunity of surgery and need sufficient specimens to identify the pathological type so as to determine chemotherapy regimens. Further large-scale studies are needed to confirm our conclusion.


Subject(s)
Endoscopic Ultrasound-Guided Fine Needle Aspiration , Pancreatic Neoplasms , Humans , Middle Aged , Endoscopic Ultrasound-Guided Fine Needle Aspiration/adverse effects , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Retrospective Studies , Gallbladder/diagnostic imaging , Gallbladder/pathology , Image-Guided Biopsy , Predictive Value of Tests , Pancreatic Neoplasms/pathology
17.
Pharm Biol ; 61(1): 177-188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36620922

ABSTRACT

CONTEXT: Polygonum cuspidatum Sieb. et Zucc (Polygonaceae), the root of which is included in the Chinese Pharmcopoeia under the name 'Huzhang', has a long history as a medicinal plant and vegetable. Polygonum cuspidatum has been used in traditional Chinese medicine for the treatment of inflammation, hyperlipemia, etc. OBJECTIVE: This article reviews the pharmacological action and the clinical applications of Polygonum cuspidatum and its extracts, whether in vivo or in vitro. We also summarized the main phytochemical constituents and pharmacokinetics of Polygonum cuspidatum and its extracts. METHODS: The data were retrieved from major medical databases, such as CNKI, PubMed, and SinoMed, from 2014 to 2022. Polygonum cuspidatum, pharmacology, toxicity, clinical application, and pharmacokinetics were used as keywords. RESULTS: The rhizomes, leaves, and flowers of Polygonum cuspidatum have different phytochemical constituents. The plant contains flavonoids, anthraquinones, and stilbenes. Polygonum cuspidatum and the extracts have anti-inflammatory, antioxidation, anticancer, heart protection, and other pharmacological effects. It is used in the clinics to treat dizziness, headaches, traumatic injuries, and water and fire burns. CONCLUSIONS: Polygonum cuspidatum has the potential to treat many diseases, such as arthritis, ulcerative colitis, asthma, and cardiac hypertrophy. It has a broad range of medicinal applications, but mainly focused on root medication; its aerial parts should receive more attention. Pharmacokinetics also need to be further investigated.


Subject(s)
Fallopia japonica , Plants, Medicinal , Polygonum , Plant Extracts/therapeutic use , Plant Extracts/pharmacokinetics , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
18.
Am J Hum Genet ; 105(4): 803-812, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564438

ABSTRACT

Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last follow-up on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.


Subject(s)
Genetic Testing/methods , Hearing Loss/diagnosis , Beijing , Dried Blood Spot Testing , Female , Genetic Predisposition to Disease , Humans , Infant, Newborn , Male
19.
Arch Microbiol ; 205(1): 33, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536120

ABSTRACT

Two anaerobic, mesophilic bacteria SF3T and ASD5510 were isolated from human feces in two different countries. Strain SF3T shared 99.9% of 16S rRNA gene sequence similarity with strain ASD5510, and 92.8% similarity with the most similar strain Aminipila butyrica DSM 103574T. Strain SF3T was an anaerobic, Gram-stain-positive bacterium. Cells of strain SF3T were short rods with 0.3-0.4 µm in width × 2.0-2.4 µm in length and occurred mostly in pairs or short chains. Spore formation was not observed. The strain grew optimally at 35 °C (range from 20 to 45 °C), pH 7.5 (pH 6.0-8.5) and without NaCl addition (range from 0 to 20 g l-1 NaCl). Yeast extract was an essential growth factor for strain SF3T, L-arginine and γ-aminobutyrate were utilized as substrates for growth. The major cellular fatty acids were iso-C15:0 and C16:0 DMA. The main polar lipids were aminophospholipid (APL), diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE). The G + C content of the genomic DNA of the strain SF3T was 47.38 mol %. The paired genomic average amino acid identity (AAI) and percentage of conserved proteins (POCP) values showed relatedness of less than 61.0 and 39.4% with type strains of order Eubacteriales. On the basis of phenotypic, phylogenetic and phylogenomic evidence strain SF3T constitutes a novel species in a novel genus, for which the name Hominibacterium faecale gen. nov., sp. nov. is proposed. The type strain is SF3T (= CCAM 730T = JCM 34755T = KCTC 25324T).


Subject(s)
Arginine , Sodium Chloride , Humans , Anaerobiosis , Phylogeny , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Bacteria, Anaerobic/genetics , Gram-Positive Bacteria/genetics , Feces , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
20.
Eur Radiol ; 32(5): 3541-3552, 2022 May.
Article in English | MEDLINE | ID: mdl-35015125

ABSTRACT

OBJECTIVES: This study was designed to evaluate the performance of high-resolution magnetic resonance imaging (HR-MRI) in detecting giant cell arteritis (GCA), evaluate superficial extracranial artery and other MRI abnormalities, and compare three-dimensional (3D) and two-dimensional (2D) techniques. METHODS: PubMed, Web of Science, and Cochrane Library were screened up to March 7, 2021, and further selection was performed according to the eligibility criteria. Quality Assessment of Diagnostic Accuracy Studies-2 was used for quality assessment, and heterogeneity assessment and statistical calculations were also performed. RESULTS: In total, 1851 records were retrieved from online databases, and 15 studies were finally included. Regarding the performance of HR-MRI, the superficial extracranial artery had 75% sensitivity and 89% specificity, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.91. Positive and negative post-test possibilities were 86% and 20%, respectively, with clinical diagnosis as reference. When referenced with temporal artery biopsy, the sensitivity was 91%, specificity was 78%, AUC was 0.92, and positive and negative post-test possibilities were 78% and 10%, respectively. 3D HR-MRI and 2D HR-MRI had 70% and 72% sensitivity, respectively, and 91% and 84% specificity, respectively. CONCLUSIONS: HR-MRI is a valuable imaging modality for GCA diagnosis. It provided high accuracy in the diagnosis of GCA and played a potential role in identifying GCA-related ischemic optic neuropathy. 3D HR-MRI had better specificity than 2D HR-MRI. KEY POINTS: HR-MRI helps clinicians to diagnose GCA. Superficial extracranial arteries and other MRI abnormalities can be assessed with HR-MRI. HR-MRI can help in assessing GCA-related optic neuropathy.


Subject(s)
Giant Cell Arteritis , Biopsy , Giant Cell Arteritis/diagnostic imaging , Giant Cell Arteritis/pathology , Humans , Magnetic Resonance Imaging/methods , Optic Nerve/pathology , Sensitivity and Specificity , Temporal Arteries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL