Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
Add more filters

Publication year range
1.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35026152

ABSTRACT

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Vaccination , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Adult , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/blood , Clone Cells , Cohort Studies , Cytokines/metabolism , Female , Germinal Center/immunology , HLA-DP beta-Chains/immunology , Humans , Immunodominant Epitopes/immunology , Jurkat Cells , Lymph Nodes/metabolism , Male , Middle Aged , Peptides/chemistry , Peptides/metabolism , Protein Multimerization , Receptors, Antigen, T-Cell/metabolism
2.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: mdl-37188942

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
3.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749325

ABSTRACT

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Subject(s)
CD8-Positive T-Lymphocytes , Longevity , Infant, Newborn , Humans , Aged , Epitopes, T-Lymphocyte/genetics , T-Lymphocytes, Cytotoxic , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell/genetics
4.
Nat Immunol ; 24(6): 966-978, 2023 06.
Article in English | MEDLINE | ID: mdl-37248417

ABSTRACT

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Australia/epidemiology , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing , Immunity , Antibodies, Viral , Vaccination
5.
Nat Immunol ; 21(8): 914-926, 2020 08.
Article in English | MEDLINE | ID: mdl-32424363

ABSTRACT

Adoptive cell therapies using genetically engineered T cell receptor or chimeric antigen receptor T cells are emerging forms of immunotherapy that redirect T cells to specifically target cancer. However, tumor antigen heterogeneity remains a key challenge limiting their efficacy against solid cancers. Here, we engineered T cells to secrete the dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L-secreting T cells expanded intratumoral conventional type 1 DCs and substantially increased host DC and T cell activation when combined with immune agonists poly (I:C) and anti-4-1BB. Importantly, combination therapy led to enhanced inhibition of tumor growth and the induction of epitope spreading towards antigens beyond those recognized by adoptively transferred T cells in solid tumor models of T cell receptor and chimeric antigen receptor T cell therapy. Our data suggest that augmenting endogenous DCs is a promising strategy to overcome the clinical problem of antigen-negative tumor escape following adoptive cell therapy.


Subject(s)
Dendritic Cells/immunology , Immunotherapy, Adoptive , Membrane Proteins/immunology , Neoplasms, Experimental/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Humans , Immunologic Factors , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology
6.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36958334

ABSTRACT

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Breakthrough Infections , RNA, Viral , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
7.
Nat Immunol ; 25(4): 594-595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491310
8.
Nat Immunol ; 20(5): 613-625, 2019 05.
Article in English | MEDLINE | ID: mdl-30778243

ABSTRACT

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Gammainfluenzavirus/immunology , Influenza A virus/immunology , Influenza B virus/immunology , Influenza, Human/immunology , Adolescent , Adult , Aged , Animals , CD8-Positive T-Lymphocytes/virology , Child , Epitopes, T-Lymphocyte/immunology , Female , Humans , Influenza A virus/physiology , Influenza B virus/physiology , Influenza Vaccines/immunology , Influenza, Human/virology , Gammainfluenzavirus/physiology , Male , Mice , Middle Aged , Young Adult
9.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35750048

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
10.
Immunity ; 54(5): 1066-1082.e5, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33951417

ABSTRACT

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαß repertoires and promiscuous αß-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαß diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Aged , Amino Acid Motifs , CD4-Positive T-Lymphocytes , Child , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/chemistry , Male , Middle Aged , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
12.
Nat Immunol ; 17(11): 1300-1311, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27668799

ABSTRACT

Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.


Subject(s)
Cell Differentiation/immunology , Mucosal-Associated Invariant T Cells/cytology , Mucosal-Associated Invariant T Cells/physiology , Thymus Gland/immunology , Thymus Gland/metabolism , Animals , Antigens, CD1d/genetics , Biomarkers , Cell Differentiation/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunophenotyping , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Male , Mice , Mice, Knockout , MicroRNAs/genetics
14.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214784

ABSTRACT

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Influenza A virus , Influenza, Human , Humans , CD8-Positive T-Lymphocytes/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Glycated Hemoglobin , Hyperglycemia/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
PLoS Pathog ; 18(3): e1010337, 2022 03.
Article in English | MEDLINE | ID: mdl-35255101

ABSTRACT

HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Australia , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A Antigens , Humans , Indigenous Peoples , Influenza B virus , Leukocytes, Mononuclear , Peptides
16.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Article in English | MEDLINE | ID: mdl-36206307

ABSTRACT

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Humans , Hemagglutinins , Antibodies, Viral , Vaccination , Hemagglutination Inhibition Tests , Vaccines, Inactivated , Macaca fascicularis , Virion , Immunoglobulin A , Immunoglobulin G , Nucleoproteins
17.
Article in English | MEDLINE | ID: mdl-38548324

ABSTRACT

BACKGROUND: Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS: In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS: Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION: These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.

18.
J Immunol ; 209(10): 1832-1836, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36426954

ABSTRACT

In this study, we investigated how pre-existing Ab immunity to influenza virus established from prior immunizations affects the development of CD8+ T cell responses evoked after vaccination with a live attenuated vaccine. Using a mouse model and a panel of live attenuated influenza virus vaccine candidates (cold adapted and single cycle), we show that pre-existing influenza-specific Abs directed against the vaccine backbone attenuate the size and quality of the vaccine-induced CD8+ T cell response. Importantly, we show that increasing the vaccine dose can overcome this impediment, resulting in improved vaccine-induced circulating and tissue-resident memory CD8+ T cell responses, which were protective against heterologous influenza challenge. Thus, the reduced size and quality of the T cell response elicited by a live attenuated influenza virus vaccine imparted by the influenza-specific Ab landscape of the vaccinee can be overcome by increasing vaccine dose.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Vaccines, Attenuated , Immunity, Humoral , CD8-Positive T-Lymphocytes
19.
J Immunol ; 208(10): 2267-2271, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35487578

ABSTRACT

Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.


Subject(s)
COVID-19 , Antibodies, Viral , Germinal Center , Humans , Palatine Tonsil , SARS-CoV-2 , T Follicular Helper Cells
20.
J Immunol ; 208(6): 1389-1395, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35246495

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRß-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRß-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous ß-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.


Subject(s)
Mucosal-Associated Invariant T Cells , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Mucous Membrane , Receptors, Antigen, T-Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL