Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975957

ABSTRACT

Plant roots adapt to the mechanical constraints of the soil to grow and absorb water and nutrients. As in animal species, mechanosensitive ion channels in plants are proposed to transduce external mechanical forces into biological signals. However, the identity of these plant root ion channels remains unknown. Here, we show that Arabidopsis thaliana PIEZO1 (PZO1) has preserved the function of its animal relatives and acts as an ion channel. We present evidence that plant PIEZO1 is expressed in the columella and lateral root cap cells of the root tip, which are known to experience robust mechanical strain during root growth. Deleting PZO1 from the whole plant significantly reduced the ability of its roots to penetrate denser barriers compared to wild-type plants. pzo1 mutant root tips exhibited diminished calcium transients in response to mechanical stimulation, supporting a role of PZO1 in root mechanotransduction. Finally, a chimeric PZO1 channel that includes the C-terminal half of PZO1 containing the putative pore region was functional and mechanosensitive when expressed in naive mammalian cells. Collectively, our data suggest that Arabidopsis PIEZO1 plays an important role in root mechanotransduction and establish PIEZOs as physiologically relevant mechanosensitive ion channels across animal and plant kingdoms.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Mechanotransduction, Cellular/physiology , Membrane Transport Proteins/physiology , Plant Roots/physiology
2.
Hum Gene Ther ; 35(1-2): 36-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38126359

ABSTRACT

Adeno-associated virus (AAV) vectors are used to deliver therapeutic transgenes, but host immune responses may interfere with transduction and transgene expression. We evaluated prophylactic corticosteroid treatment on AAV5-mediated expression in liver tissue. Wild-type C57BL/6 mice received 6 × 1013 vg/kg AAV5-HLP-hA1AT, an AAV5 vector carrying a human α1-antitrypsin (hA1AT) gene with a hepatocyte-specific promoter. Mice received 4 weeks of daily 2 mg/kg prednisolone or water starting day -1 or 0 before vector dosing. Mice that received prophylactic corticosteroids had significantly higher serum hA1AT protein than mice that did not, starting at 6 weeks and persisting to the study end at 12 weeks, potentially through a decrease in the number of low responders. RNAseq and proteomic analyses investigating mechanisms mediating the improvement of transgene expression found that prophylactic corticosteroid treatment upregulated the AAV5 coreceptor platelet-derived growth factor receptor alpha (PDGFRα) on hepatocytes and downregulated its competitive ligand PDGFα, thus increasing the uptake of AAV5 vectors. Evidently, prophylactic corticosteroid treatment also suppressed acute immune responses to AAV. Together, these mechanisms resulted in increased uptake and preservation of the transgene, allowing more vector genomes to be available to assemble into stable, full-length structures mediating long-term transgene expression. Prophylactic corticosteroids represent a potential actionable strategy to improve AAV5-mediated transgene expression and decrease intersubject variability.


Subject(s)
Prednisolone , Proteomics , Humans , Mice , Animals , Up-Regulation , Mice, Inbred C57BL , Hepatocytes , Transgenes , Adrenal Cortex Hormones , Receptors, Platelet-Derived Growth Factor/genetics , Immunity, Innate , Dependovirus/genetics , Genetic Vectors/genetics
3.
Elife ; 112022 08 23.
Article in English | MEDLINE | ID: mdl-35997251

ABSTRACT

Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron-satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.


Subject(s)
Ganglia, Sympathetic , Neuroglia , Animals , Cell Survival , Mice , Neuroglia/physiology , Neurons , Signal Transduction
4.
Elife ; 102021 03 16.
Article in English | MEDLINE | ID: mdl-33724187

ABSTRACT

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


Subject(s)
Carnivorous Plant/genetics , Droseraceae/genetics , Ion Channels/genetics , Plant Proteins/genetics , Touch , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Carnivorous Plant/metabolism , Droseraceae/metabolism , Genes, Plant , Ion Channels/metabolism , Ion Transport/genetics , Plant Proteins/metabolism , Transcriptome
5.
Sci Rep ; 10(1): 19013, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149214

ABSTRACT

Glaucoma disproportionately affects individuals of African descent. Prior studies of the PIEZO1 mechanoreceptor have suggested a possible role in glaucoma pathophysiology. Here, we investigated associations between a Piezo1 gain-of-function variant common in individuals of African descent with glaucoma-related phenotypes. We analyzed whole genome sequences to identify Piezo1 variants and their frequencies among 1565 human participants. For the most common variant (e756del), we compared phenotypes between heterozygotes, homozygotes, and wildtypes. Longitudinal mixed effects models of visual field mean deviation (MD) and retinal nerve fiber layer (RNFL) thickness were used to evaluate progression. Based on trends in the models, further investigation was conducted using Piezo1 gain-of-function mice. About 30% of African descent individuals had at least one e756del allele. There were trends suggesting e756del was associated with higher IOPs, thinner RNFLs, lower optic nerve head capillary densities, and greater decreases in MD and RNFL thickness over time, but these did not reach statistical significance. Among mice, increased Piezo1 activity was not significantly associated with IOP or retinal ganglion cell density. Our study confirms that the Piezo1 e756del gain-of-function variant is a frequent polymorphism present in African descent individuals but is unrelated to examined differences in glaucoma phenotypes. Ongoing work is needed to elucidate the role of Piezo1-mediated mechanotransduction in glaucoma.


Subject(s)
Gain of Function Mutation , Glaucoma/genetics , Ion Channels/genetics , Phenotype , Adult , Animals , Black People , Cohort Studies , Genotype , Glaucoma/physiopathology , Humans , Intraocular Pressure , Mechanotransduction, Cellular , Mice , Retinal Ganglion Cells/pathology , White People
6.
J Vis Exp ; (150)2019 08 25.
Article in English | MEDLINE | ID: mdl-31498301

ABSTRACT

Chemogenetic strategies have emerged as reliable tools for remote control of neuronal activity. Among these, designer receptors exclusively activated by designer drugs (DREADDs) have become the most popular chemogenetic approach used in modern neuroscience. Most studies deliver the ligand clozapine-N-oxide (CNO) using a single intraperitoneal injection, which is suitable for the acute activation/inhibition of the targeted neuronal population. There are, however, only a few examples of strategies for chronic modulation of DREADD-controlled neurons, the majority of which rely on the use of delivery systems that require surgical intervention. Here, we expand on two non-invasive strategies for delivering the ligand CNO to chronically manipulate neural population in mice. CNO was administered either by using repetitive (daily) eye-drops, or chronically through the animal's drinking water. These non-invasive paradigms result in robust activation of the designer receptors that persisted throughout the CNO treatments. The methods described here offer alternatives for the chronic DREADD-mediated control of neuronal activity and may be useful for experiments designed to evaluate behavior in freely moving animals, focusing on less-invasive CNO delivery methods.


Subject(s)
Clozapine/analogs & derivatives , Neurons/drug effects , Animals , Clozapine/administration & dosage , Clozapine/pharmacology , Designer Drugs/pharmacology , Drinking Water , Male , Mice , Ophthalmic Solutions , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/pharmacology
7.
Sci Transl Med ; 10(462)2018 10 10.
Article in English | MEDLINE | ID: mdl-30305457

ABSTRACT

The brush of a feather and a pinprick are perceived as distinct sensations because they are detected by discrete cutaneous sensory neurons. Inflammation or nerve injury can disrupt this sensory coding and result in maladaptive pain states, including mechanical allodynia, the development of pain in response to innocuous touch. However, the molecular mechanisms underlying the alteration of mechanical sensitization are poorly understood. In mice and humans, loss of mechanically activated PIEZO2 channels results in the inability to sense discriminative touch. However, the role of Piezo2 in acute and sensitized mechanical pain is not well defined. Here, we showed that optogenetic activation of Piezo2-expressing sensory neurons induced nociception in mice. Mice lacking Piezo2 in caudal sensory neurons had impaired nocifensive responses to mechanical stimuli. Consistently, ex vivo recordings in skin-nerve preparations from these mice showed diminished Aδ-nociceptor and C-fiber firing in response to mechanical stimulation. Punctate and dynamic allodynia in response to capsaicin-induced inflammation and spared nerve injury was absent in Piezo2-deficient mice. These results indicate that Piezo2 mediates inflammation- and nerve injury-induced sensitized mechanical pain, and suggest that targeting PIEZO2 might be an effective strategy for treating mechanical allodynia.


Subject(s)
Hyperalgesia/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular , Pain/metabolism , Action Potentials , Animals , Behavior, Animal , Capsaicin , Hyperalgesia/complications , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Ion Channels/deficiency , Mice, Knockout , Neurons/metabolism , Nociception , Nociceptors/metabolism , Pain/complications , Pain/pathology , Pain/physiopathology
8.
Front Neural Circuits ; 11: 93, 2017.
Article in English | MEDLINE | ID: mdl-29218003

ABSTRACT

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are an important tool for modulating and understanding neural circuits. Depending on the DREADD system used, DREADD-targeted neurons can be activated or repressed in vivo following a dose of the DREADD agonist clozapine-N-oxide (CNO). Because DREADD experiments often involve behavioral assays, the method of CNO delivery is important. Currently, the most common delivery method is intraperitoneal (IP) injection. IP injection is both a fast and reliable technique, but it is painful and stressful particularly when many injections are required. We sought an alternative CNO delivery paradigm, which would retain the speed and reliability of IP injections without being as invasive. Here, we show that CNO can be effectively delivered topically via eye-drops. Eye-drops robustly activated DREADD-expressing neurons in the brain and peripheral tissues and does so at the same dosages as IP injection. Eye-drops provide an easier, less invasive and less stressful method for activating DREADDs in vivo.


Subject(s)
Clozapine/analogs & derivatives , Designer Drugs/administration & dosage , Neurons/drug effects , Neurotransmitter Agents/administration & dosage , Ophthalmic Solutions , Receptors, Neurotransmitter/metabolism , Animals , Brain/cytology , Brain/drug effects , Brain/metabolism , Clozapine/administration & dosage , Dependovirus/genetics , Female , Gene Transfer Techniques , Genetic Vectors , Injections, Intraperitoneal , Male , Mice, 129 Strain , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pupil/drug effects , Pupil/physiology , Receptors, Neurotransmitter/administration & dosage , Receptors, Neurotransmitter/genetics
9.
Elife ; 62017 06 15.
Article in English | MEDLINE | ID: mdl-28617242

ABSTRACT

The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.


Subject(s)
Circadian Clocks , Light , Retina/physiology , Retina/radiation effects , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Visual Pathways/physiology , Animals , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL