Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nature ; 582(7811): 246-252, 2020 06.
Article in English | MEDLINE | ID: mdl-32499648

ABSTRACT

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.


Subject(s)
Gene Expression Regulation, Developmental , Hypothalamus/cytology , Hypothalamus/embryology , Morphogenesis , Animals , Cell Differentiation , Cell Lineage , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Gene Regulatory Networks , Genome-Wide Association Study , Glutamic Acid/metabolism , Hypothalamus/metabolism , Male , Mice , Morphogenesis/genetics , Nerve Tissue Proteins/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Receptors, Immunologic/metabolism , Regulon/genetics , Signal Transduction , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism , Roundabout Proteins
2.
EMBO J ; 39(1): e100882, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31750562

ABSTRACT

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic ß cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Glucose Intolerance/etiology , Glucose/metabolism , Homeostasis/drug effects , Islets of Langerhans/pathology , Methamphetamine/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Animals , Central Nervous System Stimulants/toxicity , DNA Methylation , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Profiling , Gene Expression Regulation , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Humans , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Maternal Exposure/adverse effects , Mice , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology
3.
Neurochem Res ; 48(4): 1242-1253, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36482034

ABSTRACT

Cannabis legalization prompted the dilemma if plant-derived recreational drugs can have therapeutic potential and, consequently, how to address their regulation and safe distribution. In parallel, the steady worldwide decriminalization of cannabis and the enhanced content of its main psychoactive compound Δ9-tetrahydrocannabinol (THC), exposes populations to increasing amounts of cannabis and THC across all ages. While adverse effects of cannabis during critical stages of fetal neurodevelopment are investigated, these studies center on neurons alone. Thus, a gap of knowledge exists on how intercellular interactions between neighboring cell types, particularly astrocytes and neurons, could modify THC action. Here, we combine transcriptome analysis, transgenic models, high resolution microscopy and live cell imaging to demonstrate that hippocampal astrocytes accumulate in the strata radiatum and lacunosum moleculare of the CA1 subfield, containing particularly sensitive neurons to stressors, upon long term postnatal THC exposure in vivo. As this altered distribution is not dependent on cell proliferation, we propose that resident astrocytes accumulate in select areas to protect pyramidal neurons and their neurite extensions from pathological damage. Indeed, we could recapitulate the neuroprotective effect of astrocytes in vitro, as their physical presence significantly reduced the death of primary hippocampal neurons upon THC exposure (> 5 µM). Even so, astrocytes are also affected by a reduced metabolic readiness to stressors, as reflected by a downregulation of mitochondrial proteins. Thus, we find that astrocytes exert protective functions on local neurons during THC exposure, even though their mitochondrial electron transport chain is disrupted.


Subject(s)
Astrocytes , Dronabinol , Astrocytes/metabolism , Dronabinol/toxicity , Neurons/metabolism , Hippocampus/metabolism , Pyramidal Cells/metabolism , Cannabinoid Receptor Agonists
4.
Eur J Neurosci ; 55(3): 725-732, 2022 02.
Article in English | MEDLINE | ID: mdl-34978111

ABSTRACT

Experimental investigation of early postnatal brain development in infant mice (

Subject(s)
Brain , Imaging, Three-Dimensional , Animals , Head , Humans , Mice , Printing, Three-Dimensional , Software
5.
EMBO J ; 37(21)2018 11 02.
Article in English | MEDLINE | ID: mdl-30209240

ABSTRACT

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Subject(s)
Adrenergic Neurons/metabolism , Ciliary Neurotrophic Factor/metabolism , Hypothalamus/metabolism , Locus Coeruleus/metabolism , Stress, Physiological , Adrenergic Neurons/pathology , Animals , Ciliary Neurotrophic Factor/genetics , Hypothalamus/pathology , Locus Coeruleus/pathology , Mice , Mice, Knockout , Rats
6.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Article in English | MEDLINE | ID: mdl-31735910

ABSTRACT

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Subject(s)
Brain/drug effects , Diet, Western/adverse effects , Epigenesis, Genetic/drug effects , Animals , Anxiety , Brain/metabolism , DNA Methylation/drug effects , Depression , Diet , Dietary Supplements , Endocannabinoids/metabolism , Epigenesis, Genetic/genetics , Epigenomics/methods , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Pregnancy , Receptor, Cannabinoid, CB1/drug effects
7.
Proc Natl Acad Sci U S A ; 114(10): E2006-E2015, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223495

ABSTRACT

The rostral migratory stream (RMS) is viewed as a glia-enriched conduit of forward-migrating neuroblasts in which chemorepulsive signals control the pace of forward migration. Here we demonstrate the existence of a scaffold of neurons that receive synaptic inputs within the rat, mouse, and human fetal RMS equivalents. These neurons express secretagogin, a Ca2+-sensor protein, to execute an annexin V-dependent externalization of matrix metalloprotease-2 (MMP-2) for reconfiguring the extracellular matrix locally. Mouse genetics combined with pharmacological probing in vivo and in vitro demonstrate that MMP-2 externalization occurs on demand and that its loss slows neuroblast migration. Loss of function is particularly remarkable upon injury to the olfactory bulb. Cumulatively, we identify a signaling cascade that provokes structural remodeling of the RMS through recruitment of MMP-2 by a previously unrecognized neuronal constituent. Given the life-long presence of secretagogin-containing neurons in human, this mechanism might be exploited for therapeutic benefit in rescue strategies.


Subject(s)
Calcium/metabolism , Matrix Metalloproteinase 2/genetics , Neuroglia/metabolism , Neurons/metabolism , Olfactory Bulb/metabolism , Secretagogins/genetics , Animals , Annexin A5/genetics , Annexin A5/metabolism , Cell Movement , Fetus , Gene Expression Regulation , Humans , Male , Matrix Metalloproteinase 2/metabolism , Mice , Microtomy , Neuroglia/ultrastructure , Neurons/ultrastructure , Olfactory Bulb/cytology , Primary Cell Culture , Rats , Rats, Wistar , Secretagogins/metabolism , Synapses/metabolism , Synapses/ultrastructure , Tissue Culture Techniques
8.
EMBO J ; 33(7): 668-85, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24469251

ABSTRACT

Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC-sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin-2, a microtubule-binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis-exposed fetuses, defining SCG10 as the first cannabis-driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c-Jun N-terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.


Subject(s)
Cerebral Cortex/drug effects , Dronabinol/pharmacology , Hippocampus/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Psychotropic Drugs/pharmacology , Receptor, Cannabinoid, CB1/drug effects , Animals , Axons/drug effects , Calcium-Binding Proteins , Cell Differentiation , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Female , Fetus/abnormalities , Fetus/drug effects , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hippocampus/cytology , Hippocampus/embryology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Maternal Exposure/adverse effects , Mice , Mice, Inbred C57BL , Phosphorylation , Pregnancy , Proteomics , RNA, Messenger/genetics , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Stathmin , Time Factors
9.
Cereb Cortex ; 27(4): 2453-2468, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27102657

ABSTRACT

Although extensively studied postnatally, the functional differentiation of cholecystokinin (CCK)-containing interneurons en route towards the cerebral cortex during fetal development is incompletely understood. Here, we used CCKBAC/DsRed mice encoding a CCK promoter-driven red fluorescent protein to analyze the temporal dynamics of DsRed expression, neuronal identity, and positioning through high-resolution developmental neuroanatomy. Additionally, we developed a dual reporter mouse line (CCKBAC/DsRed::GAD67gfp/+) to differentiate CCK-containing interneurons from DsRed+ principal cells during prenatal development. We show that DsRed is upregulated in interneurons once they exit their proliferative niche in the ganglionic eminence and remains stably expressed throughout their long-distance migration towards the cerebrum, particularly in the hippocampus. DsRed+ interneurons, including a cohort coexpressing calretinin, accumulated at the palliosubpallial boundary by embryonic day 12.5. Pioneer DsRed+ interneurons already reached deep hippocampal layers by embryonic day 14.5 and were morphologically differentiated by birth. Furthermore, we probed migrating interneurons entering and traversing the cortical plate, as well as stationary cells in the hippocampus by patch-clamp electrophysiology to show the first signs of Na+ and K+ channel activity by embryonic day 12.5 and reliable adult-like excitability by embryonic day 18.5. Cumulatively, this study defines key positional, molecular, and biophysical properties of CCK+ interneurons in the prenatal brain.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/cytology , Cholecystokinin/metabolism , Interneurons/cytology , Neurogenesis/physiology , Animals , Cell Movement , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Immunohistochemistry , In Situ Hybridization , Interneurons/metabolism , Mice , Mice, Transgenic , Microscopy, Confocal , Patch-Clamp Techniques
10.
Proc Natl Acad Sci U S A ; 112(45): E6185-94, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26494286

ABSTRACT

Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of ß cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/ß cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.


Subject(s)
Endocannabinoids/metabolism , Islets of Langerhans/embryology , Morphogenesis/physiology , Receptor, Cannabinoid, CB1/metabolism , TRPV Cation Channels/metabolism , Analysis of Variance , Animals , Fatty Acids, Omega-3/administration & dosage , Female , Fetus/metabolism , Glucose Tolerance Test , Image Processing, Computer-Assisted , Islets of Langerhans/anatomy & histology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Pregnancy
11.
Proc Natl Acad Sci U S A ; 110(5): 1935-40, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23319656

ABSTRACT

Endocannabinoid, particularly 2-arachidonoyl glycerol (2-AG), signaling has recently emerged as a molecular determinant of neuronal migration and synapse formation during cortical development. However, the cell type specificity and molecular regulation of spatially and temporally confined morphogenic 2-AG signals remain unexplored. Here, we demonstrate that genetic and pharmacological manipulation of CB(1) cannabinoid receptors permanently alters cholinergic projection neuron identity and hippocampal innervation. We show that nerve growth factor (NGF), implicated in the morphogenesis and survival of cholinergic projection neurons, dose-dependently and coordinately regulates the molecular machinery for 2-AG signaling via tropomyosine kinase A receptors in vitro. In doing so, NGF limits the sorting of monoacylglycerol lipase (MGL), rate limiting 2-AG bioavailability, to proximal neurites, allowing cell-autonomous 2-AG signaling at CB(1) cannabinoid receptors to persist at atypical locations to induce superfluous neurite extension. We find that NGF controls MGL degradation in vitro and in vivo and identify the E3 ubiquitin ligase activity of breast cancer type 1 susceptibility protein (BRCA1) as a candidate facilitating MGL's elimination from motile neurite segments, including growth cones. BRCA1 inactivation by cisplatin or genetically can rescue and reposition MGL, arresting NGF-induced growth responses. These data indicate that NGF can orchestrate endocannabinoid signaling to promote cholinergic differentiation and implicate BRCA1 in determining neuronal morphology.


Subject(s)
Endocannabinoids/metabolism , Monoacylglycerol Lipases/metabolism , Nerve Growth Factor/pharmacology , Neurons/drug effects , Signal Transduction/drug effects , Animals , Arachidonic Acids/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor , Cells, Cultured , Female , Gene Expression Profiling , Glycerides/metabolism , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Immunoblotting , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Monoacylglycerol Lipases/genetics , Neurons/metabolism , PC12 Cells , Rats , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Reverse Transcriptase Polymerase Chain Reaction
12.
Cereb Cortex ; 24(12): 3277-88, 2014 Dec.
Article in English | MEDLINE | ID: mdl-23897649

ABSTRACT

The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain.


Subject(s)
Cholinergic Neurons/cytology , Galanin/metabolism , Gene Expression Regulation, Developmental/physiology , Presynaptic Terminals/metabolism , Prosencephalon , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , Cholinergic Neurons/drug effects , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Galanin/pharmacology , Glutamate Decarboxylase/genetics , Mice , Mice, Transgenic , Nerve Growth Factor/pharmacology , Presynaptic Terminals/drug effects , Prosencephalon/cytology , Prosencephalon/embryology , Prosencephalon/growth & development , Rats , Rats, Wistar , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism
13.
J Biol Chem ; 288(45): 32685-32699, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24089517

ABSTRACT

Endocannabinoid signaling has been implicated in modulating insulin release from ß cells of the endocrine pancreas. ß Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.


Subject(s)
Exocytosis , Focal Adhesion Kinase 1/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Receptor, Cannabinoid, CB1/metabolism , Secretory Vesicles/metabolism , Animals , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cell Line , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Endocannabinoids/genetics , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Enzyme Activation/drug effects , Enzyme Activation/genetics , Focal Adhesion Kinase 1/genetics , Glycerides/pharmacology , Humans , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Hyperinsulinism/pathology , Insulin/genetics , Insulin Secretion , Mice , Mice, Knockout , Polyunsaturated Alkamides/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics , Secretory Vesicles/genetics
14.
Eur J Neurosci ; 39(3): 334-43, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24494674

ABSTRACT

Neurotrophins are traditionally known for their roles in neuronal development, function and survival. More recent data has highlighted the importance of neurotrophin signalling in adult signalling contexts, including the regulation of synaptic transmission. In addition, neurotrophin levels are increased in inflammatory and neuropathic pain leading to sensitization to painful stimuli. Endocannabinoid (eCB) signalling was initially studied in the context of synaptic transmission and pain alleviation whilst recently gaining attention due to its involvement in the development of the nervous system. Similar to neurotrophins, eCB levels also rise during pain perception but result in diminished pain sensations. The overlap of cellular functions between neurotrophins and eCB signalling leads to the hypothesis that these signalling systems are positioned to regulate each other and narrow the multitude of actions that both systems can promote to the specific need of the cell. Therefore, in this review, we examine to what extent the involvement of these two signalling systems is co-ordinated as opposed to being coincidental, and causal to neuronal circuit modifications in pain. Available data point to numerous direct molecular interactions between the neurotrophin and eCB signalling systems in developmental and adult contexts, including receptor-level interplay, transcriptional control and synergistic regulation of downstream signalling cascades. Although experimental observations specifically in pain circuits are limited, the universality of downstream signalling systems from both neurotrophin and endocannabinoid receptors suggest an interdependent relationship between these two diverse signalling systems.


Subject(s)
Endocannabinoids/metabolism , Nerve Growth Factors/metabolism , Neuralgia/metabolism , Signal Transduction , Animals , Brain/growth & development , Brain/metabolism , Humans , Nerve Growth Factors/genetics , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism
15.
Eur Child Adolesc Psychiatry ; 23(10): 931-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24793873

ABSTRACT

Cannabis remains one of the world's most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal "legal" highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities.


Subject(s)
Brain/drug effects , Cannabis/toxicity , Marijuana Abuse/complications , Mental Disorders/chemically induced , Prenatal Exposure Delayed Effects/chemically induced , Animals , Brain/metabolism , Developmental Disabilities/chemically induced , Developmental Disabilities/metabolism , Developmental Disabilities/physiopathology , Endocannabinoids/physiology , Female , Fetus/drug effects , Fetus/metabolism , Humans , Maternal Exposure/adverse effects , Maternal-Fetal Exchange , Mental Disorders/metabolism , Mental Disorders/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Signal Transduction
16.
Res Sq ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38405925

ABSTRACT

Astrocytes safeguard the homeostasis of the central nervous system1,2. Despite their prominent morphological plasticity under conditions that challenge the brain's adaptive capacity3-5, the classification of astrocytes, and relating their molecular make-up to spatially devolved neuronal operations that specify behavior or metabolism, remained mostly futile6,7. Although it seems unexpected in the era of single-cell biology, the lack of a major advance in stratifying astrocytes under physiological conditions rests on the incompatibility of 'neurocentric' algorithms that rely on stable developmental endpoints, lifelong transcriptional, neurotransmitter, and neuropeptide signatures for classification6-8 with the dynamic functional states, anatomic allocation, and allostatic plasticity of astrocytes1. Simplistically, therefore, astrocytes are still grouped as 'resting' vs. 'reactive', the latter referring to pathological states marked by various inducible genes3,9,10. Here, we introduced a machine learning-based feature recognition algorithm that benefits from the cumulative power of published single-cell RNA-seq data on astrocytes as a reference map to stepwise eliminate pleiotropic and inducible cellular features. For the healthy hypothalamus, this walk-back approach revealed gene regulatory networks (GRNs) that specified subsets of astrocytes, and could be used as landmarking tools for their anatomical assignment. The core molecular censuses retained by astrocyte subsets were sufficient to stratify them by allostatic competence, chiefly their signaling and metabolic interplay with neurons. Particularly, we found differentially expressed mitochondrial genes in insulin-sensing astrocytes and demonstrated their reciprocal signaling with neurons that work antagonistically within the food intake circuitry. As a proof-of-concept, we showed that disrupting Mfn2 expression in astrocytes reduced their ability to support dynamic circuit reorganization, a time-locked feature of satiety in the hypothalamus, thus leading to obesity in mice. Overall, our results suggest that astrocytes in the healthy brain are fundamentally more heterogeneous than previously thought and topologically mirror the specificity of local neurocircuits.

17.
Nat Commun ; 15(1): 8631, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39366958

ABSTRACT

Acquisition of specialized cellular features is controlled by the ordered expression of transcription factors (TFs) along differentiation trajectories. Here, we find a member of the Onecut TF family, ONECUT3, expressed in postmitotic neurons that leave their Ascl1+/Onecut1/2+ proliferative domain in the vertebrate hypothalamus to instruct neuronal differentiation. We combined single-cell RNA-seq and gain-of-function experiments for gene network reconstruction to show that ONECUT3 affects the polarization and morphogenesis of both hypothalamic GABA-derived dopamine and thyrotropin-releasing hormone (TRH)+ glutamate neurons through neuron navigator-2 (NAV2). In vivo, siRNA-mediated knockdown of ONECUT3 in neonatal mice reduced NAV2 mRNA, as well as neurite complexity in Onecut3-containing neurons, while genetic deletion of Onecut3/ceh-48 in C. elegans impaired neurocircuit wiring, and sensory discrimination-based behaviors. Thus, ONECUT3, conserved across neuronal subtypes and many species, underpins the polarization and morphological plasticity of phenotypically distinct neurons that descend from a common pool of Ascl1+ progenitors in the hypothalamus.


Subject(s)
Hypothalamus , Morphogenesis , Neurons , Transcription Factors , Animals , Hypothalamus/metabolism , Hypothalamus/cytology , Neurons/metabolism , Neurons/cytology , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Morphogenesis/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Differentiation/genetics , Male , Neurogenesis/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Inbred C57BL , Female
18.
Biochem Soc Trans ; 41(6): 1569-76, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24256256

ABSTRACT

It is increasingly recognized that maternal exposure to metabolic (nutritional) stimuli, infections, illicit or prescription drugs and environmental stressors during pregnancy can predispose affected offspring to developing devastating postnatal illnesses. If detrimental maternal stimuli coincide with critical periods of tissue production and organogenesis then they can permanently derail key cellular differentiation programs. Maternal programming can thus either provoke developmental failure directly ('direct hit') or introduce latent developmental errors that enable otherwise sub-threshold secondary stressors to manifest as disease ('double hit') postnatally. Accumulating evidence suggests that nervous system development is tightly controlled by maternal metabolic stimuli, and whose synaptic wiring and integrative capacity are adversely affected by dietary and hormonal challenges, infections or episodes of illicit drug use. Endocannabinoids, a family of signal lipids derived from polyunsaturated fatty acids, have been implicated in neuronal fate determination, the control of axonal growth, synaptogenesis and synaptic neurotransmission. Therefore the continuum and interdependence of endocannabinoid actions during the formation and function of synapses together with dynamic changes in focal and circulating endocannabinoid levels upon maternal nutritional imbalance suggest that endocannabinoids can execute the 'reprogramming' of specific neuronal networks. In the present paper, we review molecular evidence suggesting that maternal nutrition and metabolism during pregnancy can affect the formation and function of the hippocampus and hypothalamus by altering endocannabinoid signalling such that neuropsychiatric diseases and obesity respectively ensue in affected offspring. Moreover, we propose that the placenta, fetal adipose and nervous tissues interact via endocannabinoid signals. Thus endocannabinoids are hypothesized to act as a molecular substrate of maternal programming.


Subject(s)
Endocannabinoids/metabolism , Mental Disorders/metabolism , Metabolic Syndrome/metabolism , Signal Transduction , Age of Onset , Animals , Humans
19.
J Neuroendocrinol ; 35(9): e13320, 2023 09.
Article in English | MEDLINE | ID: mdl-37497857

ABSTRACT

Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.


Subject(s)
Fatty Acids, Omega-3 , Pediatric Obesity , Humans , Child , Female , Pregnancy , Fatty Acids, Omega-6/metabolism , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated/pharmacology , Brain/metabolism , Fetus/metabolism
20.
J Med Chem ; 66(21): 14853-14865, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37857356

ABSTRACT

Oxytocin (OT) and vasopressin (VP) are related neuropeptides that regulate many biological processes. In humans, OT and VP act via four G protein-coupled receptors, OTR, V1aR, V1bR, and V2R (VPRs), which are associated with several disorders. To investigate the therapeutic potential of these receptors, particularly in the receptor-dense areas of the brain, molecular probes with a high temporal and spatial resolution are required. Such a spatiotemporal resolution can be achieved by incorporating photochromic moieties into OT and VP. Here, we report the design, synthesis, and (photo)pharmacological characterization of 12 OT- and VP-derived photoprobes using different modification strategies. Despite OT's and VP's sensitivity toward structural changes, we identified two photoprobes with good potency and photoswitch window for investigating the OTR and V1bR. These photoprobes should be of high value for producing cutting-edge photocontrollable peptide probes for the study of dynamic and kinetic receptor activation processes in specific regions of the brain.


Subject(s)
Neuropeptides , Oxytocin , Humans , Oxytocin/pharmacology , Receptors, Oxytocin , Vasopressins/pharmacology , Receptors, G-Protein-Coupled
SELECTION OF CITATIONS
SEARCH DETAIL