Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 757
Filter
Add more filters

Publication year range
1.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37516105

ABSTRACT

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Subject(s)
CD8-Positive T-Lymphocytes , Histones , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Acetylation , Histones/metabolism , Ketone Bodies , Animals , Mice
2.
Nature ; 609(7929): 942-947, 2022 09.
Article in English | MEDLINE | ID: mdl-35896149

ABSTRACT

Single atoms or ions on surfaces affect processes from nucleation1 to electrochemical reactions2 and heterogeneous catalysis3. Transmission electron microscopy is a leading approach for visualizing single atoms on a variety of substrates4,5. It conventionally requires high vacuum conditions, but has been developed for in situ imaging in liquid and gaseous environments6,7 with a combined spatial and temporal resolution that is unmatched by any other method-notwithstanding concerns about electron-beam effects on samples. When imaging in liquid using commercial technologies, electron scattering in the windows enclosing the sample and in the liquid generally limits the achievable resolution to a few nanometres6,8,9. Graphene liquid cells, on the other hand, have enabled atomic-resolution imaging of metal nanoparticles in liquids10. Here we show that a double graphene liquid cell, consisting of a central molybdenum disulfide monolayer separated by hexagonal boron nitride spacers from the two enclosing graphene windows, makes it possible to monitor, with atomic resolution, the dynamics of platinum adatoms on the monolayer in an aqueous salt solution. By imaging more than 70,000 single adatom adsorption sites, we compare the site preference and dynamic motion of the adatoms in both a fully hydrated and a vacuum state. We find a modified adsorption site distribution and higher diffusivities for the adatoms in the liquid phase compared with those in vacuum. This approach paves the way for in situ liquid-phase imaging of chemical processes with single-atom precision.

3.
Nature ; 612(7941): 778-786, 2022 12.
Article in English | MEDLINE | ID: mdl-36517593

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability1-4 patterned by distinct mutational processes5,6, tumour heterogeneity7-9 and intraperitoneal spread7,8,10. Immunotherapies have had limited efficacy in HGSOC11-13, highlighting an unmet need to assess how mutational processes and the anatomical sites of tumour foci determine the immunological states of the tumour microenvironment. Here we carried out an integrative analysis of whole-genome sequencing, single-cell RNA sequencing, digital histopathology and multiplexed immunofluorescence of 160 tumour sites from 42 treatment-naive patients with HGSOC. Homologous recombination-deficient HRD-Dup (BRCA1 mutant-like) and HRD-Del (BRCA2 mutant-like) tumours harboured inflammatory signalling and ongoing immunoediting, reflected in loss of HLA diversity and tumour infiltration with highly differentiated dysfunctional CD8+ T cells. By contrast, foldback-inversion-bearing tumours exhibited elevated immunosuppressive TGFß signalling and immune exclusion, with predominantly naive/stem-like and memory T cells. Phenotypic state associations were specific to anatomical sites, highlighting compositional, topological and functional differences between adnexal tumours and distal peritoneal foci. Our findings implicate anatomical sites and mutational processes as determinants of evolutionary phenotypic divergence and immune resistance mechanisms in HGSOC. Our study provides a multi-omic cellular phenotype data substrate from which to develop and interpret future personalized immunotherapeutic approaches and early detection research.


Subject(s)
Immune Evasion , Mutation , Ovarian Neoplasms , Female , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/pathology , Homologous Recombination , Immune Evasion/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Tumor Microenvironment , Transforming Growth Factor beta , Genes, BRCA1 , Genes, BRCA2
4.
Circulation ; 149(23): 1812-1829, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38426339

ABSTRACT

BACKGROUND: Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation. METHODS: MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects. RESULTS: MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation. CONCLUSIONS: Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.


Subject(s)
Cell Differentiation , Myocytes, Cardiac , RNA-Binding Proteins , Regeneration , Animals , Myocytes, Cardiac/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice , Cell Proliferation , Signal Transduction , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , DNA-Binding Proteins
5.
Circ Res ; 132(7): 882-898, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36996176

ABSTRACT

The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.


Subject(s)
Heart Failure , Ketosis , Humans , Ketones/therapeutic use , 3-Hydroxybutyric Acid/therapeutic use , Epigenesis, Genetic , Ketone Bodies/therapeutic use , Ketone Bodies/metabolism , Heart Failure/metabolism , Ketosis/drug therapy , Ketosis/metabolism , Ketosis/pathology
6.
J Mol Cell Cardiol ; 187: 38-50, 2024 02.
Article in English | MEDLINE | ID: mdl-38160640

ABSTRACT

The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.


Subject(s)
Heart Failure , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Energy Metabolism/physiology , Mitochondria/metabolism
7.
Circulation ; 147(11): 881-896, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36705030

ABSTRACT

BACKGROUND: Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. METHODS: We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. RESULTS: We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. CONCLUSIONS: We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation.


Subject(s)
Histones , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Histones/genetics , Histones/metabolism , Genome-Wide Association Study , Lysine/genetics , Lysine/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Estrogens
8.
Circulation ; 147(15): 1147-1161, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36856044

ABSTRACT

BACKGROUND: The human heart primarily metabolizes fatty acids, and this decreases as alternative fuel use rises in heart failure with reduced ejection fraction (HFrEF). Patients with severe obesity and diabetes are thought to have increased myocardial fatty acid metabolism, but whether this is found in those who also have heart failure with preserved ejection fraction (HFpEF) is unknown. METHODS: Plasma and endomyocardial biopsies were obtained from HFpEF (n=38), HFrEF (n=30), and nonfailing donor controls (n=20). Quantitative targeted metabolomics measured organic acids, amino acids, and acylcarnitines in myocardium (72 metabolites) and plasma (69 metabolites). The results were integrated with reported RNA sequencing data. Metabolomics were analyzed using agnostic clustering tools, Kruskal-Wallis test with Dunn test, and machine learning. RESULTS: Agnostic clustering of myocardial but not plasma metabolites separated disease groups. Despite more obesity and diabetes in HFpEF versus HFrEF (body mass index, 39.8 kg/m2 versus 26.1 kg/m2; diabetes, 70% versus 30%; both P<0.0001), medium- and long-chain acylcarnitines (mostly metabolites of fatty acid oxidation) were markedly lower in myocardium from both heart failure groups versus control. In contrast, plasma levels were no different or higher than control. Gene expression linked to fatty acid metabolism was generally lower in HFpEF versus control. Myocardial pyruvate was higher in HFpEF whereas the tricarboxylic acid cycle intermediates succinate and fumarate were lower, as were several genes controlling glucose metabolism. Non-branched-chain and branched-chain amino acids (BCAA) were highest in HFpEF myocardium, yet downstream BCAA metabolites and genes controlling BCAA metabolism were lower. Ketone levels were higher in myocardium and plasma of patients with HFrEF but not HFpEF. HFpEF metabolomic-derived subgroups were differentiated by only a few differences in BCAA metabolites. CONCLUSIONS: Despite marked obesity and diabetes, HFpEF myocardium exhibited lower fatty acid metabolites compared with HFrEF. Ketones and metabolites of the tricarboxylic acid cycle and BCAA were also lower in HFpEF, suggesting insufficient use of alternative fuels. These differences were not detectable in plasma and challenge conventional views of myocardial fuel use in HFpEF with marked diabetes and obesity and suggest substantial fuel inflexibility in this syndrome.


Subject(s)
Diabetes Mellitus , Heart Failure , Humans , Heart Failure/metabolism , Stroke Volume , Myocardium/metabolism , Diabetes Mellitus/pathology , Obesity/pathology , Fatty Acids
9.
Biomacromolecules ; 25(1): 24-42, 2024 01 08.
Article in English | MEDLINE | ID: mdl-37890872

ABSTRACT

Photodynamic therapy (PDT) is an anticancer therapy with proven efficacy; however, its application is often limited by prolonged skin photosensitivity and solubility issues associated with the phototherapeutic agents. Injectable hydrogels which can effectively provide intratumoral delivery of photosensitizers with sustained release are attracting increased interest for photodynamic cancer therapies. However, most of the hydrogels for PDT applications are based on systems with high complexity, and often, preclinical validation is not provided. Herein, we provide a simple and reliable pH-sensitive hydrogel formulation that presents appropriate rheological properties for intratumoral injection. For this, Temoporfin (m-THPC), which is one of the most potent clinical photosensitizers, was chemically modified to introduce functional groups that act as cross-linkers in the formation of chitosan-based hydrogels. The introduction of -COOH groups resulted in a water-soluble derivative, named PS2, that was the most promising candidate. Although PS2 was not internalized by the target cells, its extracellular activation caused effective damage to the cancer cells, which was likely mediated by lipid peroxidation. The injection of the hydrogel containing PS2 in the tumors was monitored by high-frequency ultrasounds and in vivo fluorescence imaging which confirmed the sustained release of PS2 for at least 72 h. Following local administration, light exposure was conducted one (single irradiation protocol) or three (multiple irradiation protocols) times. The latter delivered the best therapeutic outcomes, which included complete tumor regression and systemic anticancer immune responses. Immunological memory was induced as ∼75% of the mice cured with our strategy rejected a second rechallenge with live cancer cells. Additionally, the failure of PDT to treat immunocompromised mice bearing tumors reinforces the relevance of the host immune system. Finally, our strategy promotes anticancer immune responses that lead to the abscopal protection against distant metastases.


Subject(s)
Chitosan , Neoplasms , Photochemotherapy , Mice , Animals , Hydrogels/chemistry , Photosensitizing Agents/pharmacology , Chitosan/chemistry , Delayed-Action Preparations/pharmacology , Neoplasms/drug therapy
10.
Rapid Commun Mass Spectrom ; 38(2): e9658, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38124172

ABSTRACT

RATIONALE: The use of secondary ion mass spectrometry (SIMS) to perform micrometer-scale in situ carbon isotope (δ13 C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole-shell δ13 C values measured by gas source mass spectrometry (GSMS). METHODS: Paired SIMS and GSMS δ13 C values measured from final chamber fragments of the same shell of the planktic foraminifer Orbulina universa are compared. The SIMS-GSMS δ13 C differences (Δ13 CSIMS-GSMS ) were determined via paired analysis of hydrogen peroxide-cleaned fragments of modern cultured specimens and of fossil specimens from deep-sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT-253 or a Fisons Optima isotope ratio mass spectrometer (GSMS). RESULTS: Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS-GSMS δ13 C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13 CSIMS-GSMS values of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS-GSMS δ13 C difference. CONCLUSIONS: The noted Δ13 CSIMS-GSMS values are most likely due to matrix effects causing sample-standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105 times smaller than that analyzed by GSMS; hence, the extent to which these Δ13 CSIMS-GSMS values represent differences in analyte or instrument factors remains unclear.


Subject(s)
Hydrogen Peroxide , Spectrometry, Mass, Secondary Ion , Spectrometry, Mass, Secondary Ion/methods , Carbon Isotopes/analysis , Gases
11.
Pediatr Blood Cancer ; 71(3): e30843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38173090

ABSTRACT

OBJECTIVE: To design and evaluate a clinical decision support (CDS) module to improve guideline concordant venous thromboembolism (VTE) pharmacoprophylaxis prescribing for pediatric inpatients with COVID-19. MATERIALS AND METHODS: The proportion of patients who met our institutional clinical practice guideline's (CPG) criteria for VTE prophylaxis was compared to those who triggered a CDS alert, indicating the patient needed VTE prophylaxis, and to those who were prescribed prophylaxis pre and post the launch of a new VTE CDS module to support VTE pharmacoprophylaxis prescribing. The sensitivity, specificity, positive predictive value (PPV), negative predictive value, F1-score and accuracy of the tool were calculated for the pre- and post-intervention periods using the CPG recommendation as the gold standard. Accuracy was defined as the sum of the true positives and true negatives over the sum of the true positives, false positives, true negatives, and false negatives. Logistic regression was used to identify variables associated with correct thromboprophylaxis prescribing. RESULTS: A significant increase in the proportion of patients triggering a CDS alert occurred in the post-intervention period (44.3% vs. 6.9%, p < .001); however, no reciprocal increase in VTE prophylaxis prescribing was achieved (36.6% vs. 40.9%, p = .53). The updated CDS module had an improved sensitivity (55.0% vs. 13.3%), NPV (44.9% vs. 36.3%), F1-score (66.7% vs. 23.5%), and accuracy (62.5% vs. 42.0%), but an inferior specificity (78.6% vs. 100%) and PPV (84.6% vs. 100%). DISCUSSION: The updated CDS model had an improved accuracy and overall performance in correctly identifying patients requiring VTE prophylaxis. Despite an increase in correct patient identification by the CDS module, the proportion of patients receiving appropriate pharmacologic prophylaxis did not change. CONCLUSION: CDS tools to support correct VTE prophylaxis prescribing need ongoing refinement and validation to maximize clinical utility.


Subject(s)
COVID-19 , Decision Support Systems, Clinical , Venous Thromboembolism , Humans , Child , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Inpatients , Anticoagulants/therapeutic use , Risk Factors
12.
Rev Med Virol ; 33(1): e2395, 2023 01.
Article in English | MEDLINE | ID: mdl-36056748

ABSTRACT

There is overwhelming evidence to suggest that male gender is at a higher risk of developing more severe Covid-19 disease and thus having poorer clinical outcomes. However, the relationship between testosterone (T) and Covid-19 remains unclear with both protective and deleterious effects on different aspects of the disease suggested. Here, we review the current epidemiological and biological evidence on the role of testosterone in the process of SARS-CoV-2 infection and in mediating Covid-19 severity, its potential to serve as a biomarker for risk stratification and discuss the possibility of T supplementation as a treatment or preventative therapy for Covid-19.


Subject(s)
COVID-19 , Male , Humans , SARS-CoV-2 , Testosterone/therapeutic use
13.
J Pediatr Gastroenterol Nutr ; 78(4): 817-826, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451058

ABSTRACT

OBJECTIVES: Percutaneous electrical nerve field stimulation (PENFS) has demonstrated promise in single-center trials for pediatric abdominal pain-related disorders of gut-brain interaction (DGBI). Our aim was to explore efficacy of PENFS as standard therapy for DGBI in a registry involving multiple pediatric gastroenterology referral centers. METHODS: This was a multicenter, prospective open-label registry of children (8-18 years) undergoing PENFS for DGBI at seven tertiary care gastroenterology clinics. DGBI subtypes were classified by Rome IV criteria. Parents and patients completed Abdominal Pain Index (API), Nausea Severity Scale (NSS), and Functional Disability Inventory (FDI) questionnaires before, during therapy and at follow-up visits up to 1 year later. RESULTS: A total of 292 subjects were included. Majority (74%) were female with median (interquartile range [IQR]) age 16.3 (14.0, 17.7) years. Most (68%) met criteria for functional dyspepsia and 61% had failed ≥4 pharmacologic therapies. API, NSS, and FDI scores showed significant declines within 3 weeks of therapy, persisting long-term in a subset. Baseline (n = 288) median (IQR) child-reported API scores decreased from 2.68 (1.84, 3.58) to 1.99 (1.13, 3.27) at 3 weeks (p < 0.001) and 1.81 (0.85, 3.20) at 3 months (n = 75; p < 0.001). NSS scores similarly improved from baseline, persisting at three (n = 74; p < 0.001) and 6 months later (n = 55; p < 0.001). FDI scores displayed similar reductions at 3 months (n = 76; p = 0.01) but not beyond. Parent-reported scores were consistent with child reports. CONCLUSIONS: This large, comprehensive, multicenter registry highlights efficacy of PENFS for gastrointestinal symptoms and functionality for pediatric DGBI.


Subject(s)
Brain Diseases , Dyspepsia , Gastrointestinal Diseases , Irritable Bowel Syndrome , Humans , Child , Male , Female , Adolescent , Prospective Studies , Gastrointestinal Diseases/therapy , Gastrointestinal Diseases/diagnosis , Abdominal Pain/etiology , Abdominal Pain/therapy , Abdominal Pain/diagnosis , Dyspepsia/diagnosis , Surveys and Questionnaires , Acetaminophen , Brain , Irritable Bowel Syndrome/diagnosis
14.
Pediatr Crit Care Med ; 25(1): e20-e30, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37812030

ABSTRACT

OBJECTIVES: To characterize respiratory culture practices for mechanically ventilated patients, and to identify drivers of culture use and potential barriers to changing practices across PICUs. DESIGN: Cross-sectional survey conducted May 2021-January 2022. SETTING: Sixteen academic pediatric hospitals across the United States participating in the BrighT STAR Collaborative. SUBJECTS: Pediatric critical care medicine physicians, advanced practice providers, respiratory therapists, and nurses. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We summarized the proportion of positive responses for each question within a hospital and calculated the median proportion and IQR across hospitals. We correlated responses with culture rates and compared responses by role. Sixteen invited institutions participated (100%). Five hundred sixty-eight of 1,301 (44%) e-mailed individuals completed the survey (median hospital response rate 60%). Saline lavage was common, but no PICUs had a standardized approach. There was the highest variability in perceived likelihood (median, IQR) to obtain cultures for isolated fever (49%, 38-61%), isolated laboratory changes (49%, 38-57%), fever and laboratory changes without respiratory symptoms (68%, 54-79%), isolated change in secretion characteristics (67%, 54-78%), and isolated increased secretions (55%, 40-65%). Respiratory cultures were likely to be obtained as a "pan culture" (75%, 70-86%). There was a significant correlation between higher culture rates and likelihood to obtain cultures for isolated fever, persistent fever, isolated hypotension, fever, and laboratory changes without respiratory symptoms, and "pan cultures." Respondents across hospitals would find clinical decision support (CDS) helpful (79%) and thought that CDS would help align ICU and/or consulting teams (82%). Anticipated barriers to change included reluctance to change (70%), opinion of consultants (64%), and concern for missing a diagnosis of ventilator-associated infections (62%). CONCLUSIONS: Respiratory culture collection and ordering practices were inconsistent, revealing opportunities for diagnostic stewardship. CDS would be generally well received; however, anticipated conceptual and psychologic barriers to change must be considered.


Subject(s)
Intensive Care Units, Pediatric , Ventilators, Mechanical , Child , Humans , United States , Cross-Sectional Studies , Ventilators, Mechanical/adverse effects , Surveys and Questionnaires , Attitude of Health Personnel , Fever/etiology
15.
Lancet Oncol ; 24(1): e11-e56, 2023 01.
Article in English | MEDLINE | ID: mdl-36400101

ABSTRACT

Cancer research is a crucial pillar for countries to deliver more affordable, higher quality, and more equitable cancer care. Patients treated in research-active hospitals have better outcomes than patients who are not treated in these settings. However, cancer in Europe is at a crossroads. Cancer was already a leading cause of premature death before the COVID-19 pandemic, and the disastrous effects of the pandemic on early diagnosis and treatment will probably set back cancer outcomes in Europe by almost a decade. Recognising the pivotal importance of research not just to mitigate the pandemic today, but to build better European cancer services and systems for patients tomorrow, the Lancet Oncology European Groundshot Commission on cancer research brings together a wide range of experts, together with detailed new data on cancer research activity across Europe during the past 12 years. We have deployed this knowledge to help inform Europe's Beating Cancer Plan and the EU Cancer Mission, and to set out an evidence-driven, patient-centred cancer research roadmap for Europe. The high-resolution cancer research data we have generated show current activities, captured through different metrics, including by region, disease burden, research domain, and effect on outcomes. We have also included granular data on research collaboration, gender of researchers, and research funding. The inclusion of granular data has facilitated the identification of areas that are perhaps overemphasised in current cancer research in Europe, while also highlighting domains that are underserved. Our detailed data emphasise the need for more information-driven and data-driven cancer research strategies and planning going forward. A particular focus must be on central and eastern Europe, because our findings emphasise the widening gap in cancer research activity, and capacity and outcomes, compared with the rest of Europe. Citizens and patients, no matter where they are, must benefit from advances in cancer research. This Commission also highlights that the narrow focus on discovery science and biopharmaceutical research in Europe needs to be widened to include such areas as prevention and early diagnosis; treatment modalities such as radiotherapy and surgery; and a larger concentration on developing a research and innovation strategy for the 20 million Europeans living beyond a cancer diagnosis. Our data highlight the important role of comprehensive cancer centres in driving the European cancer research agenda. Crucial to a functioning cancer research strategy and its translation into patient benefit is the need for a greater emphasis on health policy and systems research, including implementation science, so that the innovative technological outputs from cancer research have a clear pathway to delivery. This European cancer research Commission has identified 12 key recommendations within a call to action to reimagine cancer research and its implementation in Europe. We hope this call to action will help to achieve our ambitious 70:35 target: 70% average 10-year survival for all European cancer patients by 2035.


Subject(s)
COVID-19 , Neoplasms , Humans , Pandemics , COVID-19/epidemiology , Health Services Research , Europe/epidemiology , Europe, Eastern , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/therapy
16.
J Am Chem Soc ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37021910

ABSTRACT

Electrocatalytic carbon dioxide reduction (CO2R) in neutral electrolytes can mitigate the energy and carbon losses caused by carbonate formation but often experiences unsatisfied multicarbon selectivity and reaction rates because of the kinetic limitation to the critical carbon monoxide (CO)-CO coupling step. Here, we describe that a dual-phase copper-based catalyst with abundant Cu(I) sites at the amorphous-nanocrystalline interfaces, which is electrochemically robust in reducing environments, can enhance chloride-specific adsorption and consequently mediate local *CO coverage for improved CO-CO coupling kinetics. Using this catalyst design strategy, we demonstrate efficient multicarbon production from CO2R in a neutral potassium chloride electrolyte (pH ∼6.6) with a high Faradaic efficiency of 81% and a partial current density of 322 milliamperes per square centimeter. This catalyst is stable after 45 h of operation at current densities relevant to commercial CO2 electrolysis (300 mA per square centimeter).

17.
Blood ; 137(15): 2103-2113, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33270827

ABSTRACT

Venous thromboembolism (VTE) associated with cancer (CAT) is a well-described complication of cancer and a leading cause of death in patients with cancer. The purpose of this study was to assess potential associations of molecular signatures with CAT, including tumor-specific mutations and the presence of clonal hematopoiesis. We analyzed deep-coverage targeted DNA-sequencing data of >14 000 solid tumor samples using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets platform to identify somatic alterations associated with VTE. End point was defined as the first instance of cancer-associated pulmonary embolism and/or proximal/distal lower extremity deep vein thrombosis. Cause-specific Cox proportional hazards regression was used, adjusting for pertinent clinical covariates. Of 11 695 evaluable individuals, 72% had metastatic disease at time of analysis. Tumor-specific mutations in KRAS (hazard ratio [HR], 1.34; 95% confidence interval (CI), 1.09-1.64; adjusted P = .08), STK11 (HR, 2.12; 95% CI, 1.55-2.89; adjusted P < .001), KEAP1 (HR, 1.84; 95% CI, 1.21-2.79; adjusted P = .07), CTNNB1 (HR, 1.73; 95% CI, 1.15-2.60; adjusted P = .09), CDKN2B (HR, 1.45; 95% CI, 1.13-1.85; adjusted P = .07), and MET (HR, 1.83; 95% CI, 1.15-2.92; adjusted P = .09) were associated with a significantly increased risk of CAT independent of tumor type. Mutations in SETD2 were associated with a decreased risk of CAT (HR, 0.35; 95% CI, 0.16-0.79; adjusted P = .09). The presence of clonal hematopoiesis was not associated with an increased VTE rate. This is the first large-scale analysis to elucidate tumor-specific genomic events associated with CAT. Somatic tumor mutations of STK11, KRAS, CTNNB1, KEAP1, CDKN2B, and MET were associated with an increased risk of VTE in patients with solid tumors. Further analysis is needed to validate these findings and identify additional molecular signatures unique to individual tumor types.


Subject(s)
Neoplasms/complications , Venous Thromboembolism/etiology , Aged , Genetic Predisposition to Disease , Genomics , Humans , Middle Aged , Mutation , Neoplasms/genetics , Risk Factors , Venous Thromboembolism/genetics
18.
Aging Male ; 26(1): 2220567, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37287273

ABSTRACT

Functional hypogonadism is a condition characterized by low testosterone concentrations, occurring more commonly in men as they age. The International Prostate Symptom Score (IPSS) is used to categorize the severity of lower urinary tract symptoms (LUTS) and related symptoms in hypogonadal men. Testosterone therapy (TTh) has previously shown potential in improving total IPSS in men with hypogonadism. However, concerns regarding the effects of urinary function following TTh often prevent treatment in hypogonadal men. To explore this further, two population-based single-center, prospective, cumulative registry studies were combined to contribute to a total population of 1176 men with symptoms of hypogonadism. The total population was separated into a TTh group receiving testosterone undecanoate (TU) for up to 12 years and a control group that did not receive treatment. IPSS was recorded at both baseline and at final recorded visit for each patient. Long-term TTh with TU in hypogonadal men resulted in significant improvements in IPSS categories, even in patients with severe symptoms at baseline. In the control group, untreated hypogonadal men experienced a worsening of IPSS categories. These data indicate that TTh improves LUTS in men with hypogonadism and suggest that previous concerns regarding urinary function may have been overstated.


Subject(s)
Hypogonadism , Prostate , Male , Humans , Prospective Studies , Testosterone/therapeutic use , Hypogonadism/drug therapy , Registries
19.
Pediatr Blood Cancer ; 70(2): e30112, 2023 02.
Article in English | MEDLINE | ID: mdl-36495543

ABSTRACT

BACKGROUND: The incidence of venous thrombo-embolism (VTE) in hospitalized children has increased by 130%-200% over the last two decades. Given this increase, many centers utilize electronic clinical decision support (CDS) to prognosticate VTE risk and recommend prophylaxis. SARS-CoV-2 infection (COVID-19) is a risk factor for VTE; however, CDS developed before the COVID-19 pandemic may not accurately prognosticate VTE risk in children with COVID-19. This study's objective was to identify areas to improve thromboprophylaxis recommendations for children with COVID-19. METHODS: Inpatients with a positive COVID-19 test at admission were identified at a quaternary-care pediatric center between March 1, 2020 and January 20, 2022. The results of the institution's automated CDS thromboprophylaxis recommendations were compared to institutional COVID-19 thromboprophylaxis guidelines and to the actual thromboprophylaxis received. CDS optimization was performed to improve adherence to COVID-19 thromboprophylaxis recommendations. RESULTS: Of the 329 patients included in this study, 106 (28.2%) were prescribed pharmaco-prophylaxis, 167 (50.8%) were identified by the institutional COVID-19 guidelines as requiring pharmaco-prophylaxis, and 45 (13.2%) were identified by the CDS as needing pharmaco-prophylaxis. On univariate analysis, only age 12 years or more was associated with recipient of appropriate prophylaxis (OR 1.78, 95% CI: 1.13-2.82, p = .013). Five patients developed VTEs; three had symptoms at presentation, two were identified as high risk for VTE by both the automated and best practice assessments but were not prescribed pharmaco-prophylaxis. CONCLUSION: Automated thromboprophylaxis recommendations developed prior to the COVID-19 pandemic may not identify all COVID-19 patients needing pharmaco-prophylaxis. Existing CDS tools need to be updated to reflect COVID-19-specific risk factors for VTEs.


Subject(s)
COVID-19 , Venous Thromboembolism , Humans , Child , Anticoagulants/therapeutic use , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Venous Thromboembolism/epidemiology , COVID-19/complications , Pandemics , SARS-CoV-2 , Hospitals , Risk Factors
20.
Am J Emerg Med ; 66: 76-80, 2023 04.
Article in English | MEDLINE | ID: mdl-36736062

ABSTRACT

INTRODUCTION: Palliative care patients often present to the emergency department (ED) for various reasons e.g., acute illness, pain, altered mental status, and complications of therapy. Many visits involve less severe etiologies e.g., dyspnea, constipation, fear as patients approach the end of life, which may be more effectively and efficiently managed outside of the ED. The objective of this study is to identify and assess the frequency of presenting complaints, primary diagnosis, triage acuity, need for admission, in an Irish setting. METHODS: A single-center retrospective, observational study of palliative care patients presenting to a tertiary-care university hospital emergency department in Dublin, Ireland. Study subjects were identified using the palliative care database and cross-referencing with the ED electronic patient record system database. The primary objective to identify potential areas to minimize ED visits and improve patient care and quality of life by elucidating reasons for visits. Outcome measures include presenting complaint, primary diagnosis, triage severity score, admission, discharge, death in hospital. Statistical analysis presented as descriptive statistics. RESULTS: Four-hundred-ninety-nine ED visits, 245 (49%) were male, and 254 (51%) were female with a mean age of 69.3 years-of-age. Most patients, 285 (57.1%) self-referred to the emergency department, with general practitioners and skilled nursing facility referrals 72 (14.4%) and 39 (7.8%), respectively. Primary diagnoses were various cancers, chronic obstructive pulmonary disease, congestive heart failure, and dementia. Major reasons for visits were dyspnea, pain, falls, trauma, fever, and altered mental status. Two-hundred-eighty-nine patients (58%) had an emergency severity index (ESI) score of 1 or 2 demonstrating a higher level of acuity. Three-hundred-fifty-eight (71.7%) were admitted, 141 (28.3%) discharged to home, 64 (12.8%) admitted patients died during their hospital admission. CONCLUSIONS: Palliative care patients utilize ED services not uncommonly. Though many of these patients presented with higher acuity triage scores, 42% had lower ESI scores and may be effectively managed outside of the ED. These data suggest developing mechanisms for these patients to be urgently evaluated in their homes or facilities obviating the need for an ED evaluation.


Subject(s)
Palliative Care , Quality of Life , Humans , Male , Female , Aged , Retrospective Studies , Ireland/epidemiology , Emergency Service, Hospital , Pain , Dyspnea/epidemiology , Dyspnea/therapy
SELECTION OF CITATIONS
SEARCH DETAIL