Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38359819

ABSTRACT

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Subject(s)
Neoplasms , Proteogenomics , Humans , Combined Modality Therapy , Genomics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Proteomics , Tumor Escape
2.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541199

ABSTRACT

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Proteogenomics , Female , Humans , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
3.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33242424

ABSTRACT

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Proteogenomics , Brain Neoplasms/immunology , Child , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Glioma/genetics , Glioma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mutation/genetics , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Phosphoproteins/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
4.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33212010

ABSTRACT

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Molecular Targeted Therapy , Proteogenomics , APOBEC Deaminases/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cohort Studies , DNA Damage , DNA Repair , Female , Humans , Immunotherapy , Metabolomics , Middle Aged , Mutagenesis/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Receptor, ErbB-2/metabolism , Retinoblastoma Protein/metabolism , Tumor Microenvironment/immunology
6.
Mol Cell Proteomics ; 22(11): 100648, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730181

ABSTRACT

The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.


Subject(s)
Proteins , Proteomics , Proteomics/methods , Reproducibility of Results , Mass Spectrometry , Antibodies
7.
Mol Cell Proteomics ; 22(9): 100621, 2023 09.
Article in English | MEDLINE | ID: mdl-37478973

ABSTRACT

Targeted mass spectrometry (MS)-based proteomic assays, such as multiplexed multiple reaction monitoring (MRM)-MS assays, enable sensitive and specific quantification of proteotypic peptides as stoichiometric surrogates for proteins. Efforts are underway to expand the use of MRM-MS assays in clinical environments, which requires a reliable strategy to monitor proteolytic digestion efficiency within individual samples. Towards this goal, extended stable isotope-labeled standard (SIS) peptides (hE), which incorporate native proteolytic cleavage sites, can be spiked into protein lysates prior to proteolytic (trypsin) digestion, and release of the tryptic SIS peptide (hT) can be monitored. However, hT measurements alone cannot monitor the extent of digestion and may be confounded by matrix effects specific to individual patient samples; therefore, they are not sufficient to monitor sample-to-sample digestion variability. We hypothesized that measuring undigested hE, along with its paired hT, would improve detection of digestion issues compared to only measuring hT. We tested the ratio of the SIS pair measurements, or hE/hT, as a quality control (QC) metric of trypsin digestion for two MRM assays: a direct-MRM (398 targets) and an immuno-MRM (126 targets requiring immunoaffinity peptide enrichment) assay, with extended SIS peptides observable for 54% (216) and 62% (78) of the targets, respectively. We evaluated the quantitative bias for each target in a series of experiments that adversely affected proteolytic digestion (e.g., variable digestion times, pH, and temperature). We identified a subset of SIS pairs (36 for the direct-MRM, 7 for the immuno-MRM assay) for which the hE/hT ratio reliably detected inefficient digestion that resulted in decreased assay sensitivity and unreliable endogenous quantification. The hE/hT ratio was more responsive to a decrease in digestion efficiency than a metric based on hT measurements alone. For clinical-grade MRM-MS assays, this study describes a ready-to-use QC panel and also provides a road map for designing custom QC panels.


Subject(s)
Peptides , Proteomics , Humans , Proteomics/methods , Trypsin/chemistry , Peptides/analysis , Mass Spectrometry/methods , Quality Control , Digestion
8.
Anal Chem ; 94(27): 9540-9547, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35767427

ABSTRACT

Despite advances in proteomic technologies, clinical translation of plasma biomarkers remains low, partly due to a major bottleneck between the discovery of candidate biomarkers and costly clinical validation studies. Due to a dearth of multiplexable assays, generally only a few candidate biomarkers are tested, and the validation success rate is accordingly low. Previously, mass spectrometry-based approaches have been used to fill this gap but feature poor quantitative performance and were generally limited to hundreds of proteins. Here, we demonstrate the capability of an internal standard triggered-parallel reaction monitoring (IS-PRM) assay to greatly expand the numbers of candidates that can be tested with improved quantitative performance. The assay couples immunodepletion and fractionation with IS-PRM and was developed and implemented in human plasma to quantify 5176 peptides representing 1314 breast cancer biomarker candidates. Characterization of the IS-PRM assay demonstrated the precision (median % CV of 7.7%), linearity (median R2 > 0.999 over 4 orders of magnitude), and sensitivity (median LLOQ < 1 fmol, approximately) to enable rank-ordering of candidate biomarkers for validation studies. Using three plasma pools from breast cancer patients and three control pools, 893 proteins were quantified, of which 162 candidate biomarkers were verified in at least one of the cancer pools and 22 were verified in all three cancer pools. The assay greatly expands capabilities for quantification of large numbers of proteins and is well suited for prioritization of viable candidate biomarkers.


Subject(s)
Breast Neoplasms , Proteomics , Biomarkers/analysis , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Female , Humans , Mass Spectrometry/methods , Peptides/analysis , Proteins , Proteomics/methods
9.
Clin Chem ; 67(7): 1008-1018, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34136904

ABSTRACT

BACKGROUND: Conventional HER2-targeting therapies improve outcomes for patients with HER2-positive breast cancer (BC), defined as tumors showing HER2 protein overexpression by immunohistochemistry and/or ERBB2 gene amplification determined by in situ hybridization (ISH). Emerging HER2-targeting compounds show benefit in some patients with neither HER2 protein overexpression nor ERBB2 gene amplification, creating a need for new assays to select HER2-low tumors for treatment with these compounds. We evaluated the analytical performance of a targeted mass spectrometry-based assay for quantifying HER2 protein in formalin-fixed paraffin-embedded (FFPE) and frozen BC biopsies. METHODS: We used immunoaffinity-enrichment coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM-MS) to quantify HER2 protein (as peptide GLQSLPTHDPSPLQR) in 96 frozen and 119 FFPE BC biopsies. We characterized linearity, lower limit of quantification (LLOQ), and intra- and inter-day variation of the assay in frozen and FFPE tissue matrices. We determined concordance between HER2 immuno-MRM-MS and predicate immunohistochemistry and ISH assays and examined the benefit of multiplexing the assay to include proteins expressed in tumor subcompartments (e.g., stroma, adipose, lymphocytes, epithelium) to account for tissue heterogeneity. RESULTS: HER2 immuno-MRM-MS assay linearity was ≥103, assay coefficient of variation was 7.8% (FFPE) and 5.9% (frozen) for spiked-in analyte, and 7.7% (FFPE) and 7.9% (frozen) for endogenous measurements. Immuno-MRM-MS-based HER2 measurements strongly correlated with predicate assay HER2 determinations, and concordance was improved by normalizing to glyceraldehyde-3-phosphate dehydrogenase. HER2 was quantified above the LLOQ in all tumors. CONCLUSIONS: Immuno-MRM-MS can be used to quantify HER2 in FFPE and frozen BC biopsies, even at low HER2 expression levels.


Subject(s)
Breast Neoplasms , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Female , Formaldehyde/chemistry , Humans , Mass Spectrometry/methods , Paraffin Embedding , Receptor, ErbB-2/analysis , Tissue Fixation/methods
10.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26121405

ABSTRACT

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibody Specificity , Chromatin/chemistry , Immunoprecipitation/methods , Proteomics/methods , Cloning, Molecular , Computational Biology/methods , Escherichia coli/metabolism , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Peptide Library , Proteins/chemistry , Proteome , Reproducibility of Results
11.
Mol Cell Proteomics ; 15(2): 726-39, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621847

ABSTRACT

A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.


Subject(s)
Chromatography, Affinity/methods , DNA Damage/genetics , Phosphopeptides/biosynthesis , Proteomics , Cell Line , Humans , Mass Spectrometry/methods , Metals/chemistry , Phosphopeptides/genetics , Phosphorylation/genetics , Signal Transduction/genetics
12.
Nat Methods ; 11(2): 149-55, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317253

ABSTRACT

Multiple reaction monitoring (MRM) mass spectrometry has been successfully applied to monitor targeted proteins in biological specimens, raising the possibility that assays could be configured to measure all human proteins. We report the results of a pilot study designed to test the feasibility of a large-scale, international effort for MRM assay generation. We have configured, validated across three laboratories and made publicly available as a resource to the community 645 novel MRM assays representing 319 proteins expressed in human breast cancer. Assays were multiplexed in groups of >150 peptides and deployed to quantify endogenous analytes in a panel of breast cancer-related cell lines. The median assay precision was 5.4%, with high interlaboratory correlation (R(2) > 0.96). Peptide measurements in breast cancer cell lines were able to discriminate among molecular subtypes and identify genome-driven changes in the cancer proteome. These results establish the feasibility of a large-scale effort to develop an MRM assay resource.


Subject(s)
Biological Assay/standards , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Proteome/analysis , Proteomics , Tandem Mass Spectrometry/methods , Biomarkers, Tumor/genetics , Breast Neoplasms/classification , Breast Neoplasms/mortality , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Feasibility Studies , Female , Humans , Pilot Projects , Survival Rate , Tumor Cells, Cultured
13.
J Proteome Res ; 15(8): 2717-28, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27462933

ABSTRACT

Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues. Although the feasibility of using targeted, multiple reaction monitoring mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope-labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e., nine processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R(2) = 0.94) and immuno-MRM (R(2) = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens.


Subject(s)
Cells/chemistry , Proteomics/methods , Biomarkers/analysis , Formaldehyde , Humans , Isotope Labeling , Mass Spectrometry/methods , Paraffin Embedding , Tissue Fixation , Tissue Preservation/methods
14.
Sci Data ; 11(1): 27, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177134

ABSTRACT

A wealth of proteogenomic data has been generated using cancer samples to deepen our understanding of the mechanisms of cancer and how biological networks are altered in association with somatic mutation of tumor suppressor genes, such as TP53 and PTEN. To generate functional signatures of TP53 or PTEN loss, we profiled the RNA and phosphoproteomes of the MCF10A epithelial cell line, along with its congenic TP53- or PTEN-knockout derivatives, upon perturbation with the monofunctional DNA alkylating agent methyl methanesulfonate (MMS) vs. mock treatment. To enable quantitative and reproducible mass spectrometry data generation, the cell lines were SILAC-labeled (stable isotope labeling with amino acids in cell culture), and the experimental design included label swapping and biological replicates. All data are publicly available and may be used to advance our understanding of the TP53 and PTEN tumor suppressor genes and to provide functional signatures for bioinformatic analyses of proteogenomic datasets.


Subject(s)
Neoplasms , RNA , Humans , DNA Damage , Epithelial Cells , Mutation , PTEN Phosphohydrolase/genetics , Tumor Suppressor Protein p53/genetics
15.
Sci Data ; 11(1): 682, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918394

ABSTRACT

Immunotherapies are revolutionizing cancer care, but many patients do not achieve durable responses and immune-related adverse events are difficult to predict. Quantifying the hundreds of proteins involved in cancer immunity has the potential to provide biomarkers to monitor and predict tumor response. We previously developed robust, multiplexed quantitative assays for immunomodulatory proteins using targeted mass spectrometry, providing measurements that can be performed reproducibly and harmonized across laboratories. Here, we expand upon those efforts in presenting data from a multiplexed immuno-oncology (IO)-3 assay panel targeting 43 peptides representing 39 immune- and inflammation-related proteins. A suite of novel monoclonal antibodies was generated as assay reagents, and the fully characterized antibodies are made available as a resource to the community. The publicly available dataset contains complete characterization of the assay performance, as well as the mass spectrometer parameters and reagent information necessary for implementation of the assay. Quantification of the proteins will provide benefit to correlative studies in clinical trials, identification of new biomarkers, and improve understanding of the immune response in cancer.


Subject(s)
Antibodies, Monoclonal , Mass Spectrometry , Neoplasms , Humans , Antibodies, Monoclonal/immunology , Immunotherapy , Neoplasms/immunology
16.
Front Oncol ; 13: 1168710, 2023.
Article in English | MEDLINE | ID: mdl-37205196

ABSTRACT

Introduction: Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods: Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion: The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.

17.
Biopreserv Biobank ; 20(5): 436-445, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36301140

ABSTRACT

There is growing interest in proteomic analyses of tissue biopsies to reveal pathophysiology and identify biomarkers. The current gold standard for collecting tissue biopsies for preserving the proteome and post-translational modifications is flash freezing in liquid nitrogen (LN2). However, in many clinical settings, this is not an option due to unavailability of LN2 nor trained personnel for rapid biospecimen processing. To address this need, we developed a proof-of-concept quick-freeze prototype device to rapidly freeze biospecimens at the point-of-care to preserve the phosphoproteome without the need for LN2. Our objectives were to develop the device, demonstrate the ease of use, confirm the ability to ship through existing cold chain logistics, and evaluate the cooling performance (i.e., cool a tissue sample to <0°C in <60 seconds, below -8°C in <120 seconds, and maintain temperature <0°C for >60 minutes) in the context of preserving the proteome in a tissue biospecimen. To demonstrate feasibility, the performance of the prototype was benchmarked against flash freezing in LN2 using a murine melanoma patient-derived xenograft model subjected to total body irradiation to elicit phosphosignaling in the DNA damage response network. Tumors were harvested and quadrisected, with two parts of the tumor being snap frozen in LN2, and the remaining two parts being rapidly cooled in the prototype quick-freeze biospecimen containers. Phosphoproteins were profiled by liquid chromatography tandem mass spectrometry and quantified by targeted multiple reaction monitoring MS. Overall, the phosphoproteome was equivalent in biospecimens processed using the quick-freeze containers to those using the LN2 gold standard, although the measurements of a subset of phosphopeptides in the device-frozen specimens were more variable than LN2-frozen specimens. The prototype device forms the framework for development of a commercial device that will improve tissue biopsy preservation for measurement of important phosphosignaling molecules.


Subject(s)
Proteome , Proteomics , Humans , Mice , Animals , Proteome/analysis , Proteome/chemistry , Freezing , Tissue Preservation , Biopsy
18.
Sci Signal ; 14(697)2021 08 24.
Article in English | MEDLINE | ID: mdl-34429382

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen. To design a CAR with improved antigen sensitivity, we directly compared TCR and CAR signaling in primary human T cells. Global phosphoproteomic analysis revealed that key T cell signaling proteins-such as CD3δ, CD3ε, and CD3γ, which comprise a portion of the T cell co-receptor, as well as the TCR adaptor protein LAT-were either not phosphorylated or were only weakly phosphorylated by CAR stimulation. Modifying a commonplace 4-1BB/CD3ζ CAR sequence to better engage CD3ε and LAT using embedded CD3ε or GRB2 domains resulted in enhanced T cell activation in vitro in settings of a low density of antigen, and improved efficacy in in vivo models of lymphoma, leukemia, and breast cancer. These CARs represent examples of alterations in receptor design that were guided by in-depth interrogation of T cell signaling.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Multiple Myeloma/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Signal Transduction
19.
Cell Rep Methods ; 1(3)2021 07 26.
Article in English | MEDLINE | ID: mdl-34671754

ABSTRACT

SUMMARY: A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION: A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.


Subject(s)
Melanoma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mass Spectrometry/methods , Receptor Protein-Tyrosine Kinases , Mitogen-Activated Protein Kinase Kinases , Tyrosine
20.
Front Immunol ; 12: 765898, 2021.
Article in English | MEDLINE | ID: mdl-34858420

ABSTRACT

Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods , Specimen Handling/methods , Antibodies/analysis , Antibodies/immunology , Blotting, Western , Cell Line, Tumor , HeLa Cells , Humans , Jurkat Cells , MCF-7 Cells , Peptides/blood , Peptides/immunology , Proteome/genetics , Proteome/immunology , RNA-Seq/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL