Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 148(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34042968

ABSTRACT

During development, gene expression is tightly controlled to facilitate the generation of the diverse cell types that form the central nervous system. Brahma-related gene 1 (Brg1, also known as Smarca4) is the catalytic subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex that regulates transcription. We investigated the role of Brg1 between embryonic day 6.5 (E6.5) and E14.5 in Sox2-positive neural stem cells (NSCs). Being without major consequences at E6.5 and E14.5, loss of Brg1 between E7.5 and E12.5 resulted in the formation of rosette-like structures in the subventricular zone, as well as morphological alterations and enlargement of neural retina (NR). Additionally, Brg1-deficient cells showed decreased survival in vitro and in vivo. Furthermore, we uncovered distinct changes in gene expression upon Brg1 loss, pointing towards impaired neuron functions, especially those involving synaptic communication and altered composition of the extracellular matrix. Comparison with mice deficient for integrase interactor 1 (Ini1, also known as Smarcb1) revealed that the enlarged NR was Brg1 specific and was not caused by a general dysfunction of the SWI/SNF complex. These results suggest a crucial role for Brg1 in NSCs during brain and eye development.


Subject(s)
Brain/embryology , DNA Helicases/genetics , Eye/embryology , Gene Expression Regulation, Developmental/genetics , Nuclear Proteins/genetics , SMARCB1 Protein/genetics , Transcription Factors/genetics , Animals , Apoptosis/genetics , DNA Helicases/metabolism , Extracellular Matrix/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/cytology , Nuclear Proteins/metabolism , Transcription Factors/metabolism
2.
Acta Neuropathol ; 147(1): 23, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38265527

ABSTRACT

Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.


Subject(s)
Ependymoma , Neoplasm Recurrence, Local , Child , Humans , In Situ Hybridization, Fluorescence , Histones , Gene Expression Profiling
3.
J Transl Med ; 21(1): 363, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277823

ABSTRACT

BACKGROUND: Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS: Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS: Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION: Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cerebellar Neoplasms/genetics , Mutation , Phenotype , RNA
4.
Cell Mol Neurobiol ; 43(7): 3511-3526, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37219662

ABSTRACT

The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.


Subject(s)
Hydrocephalus , Transcription Factor AP-1 , Animals , Mice , Hydrocephalus/genetics , Mutation/genetics , Point Mutation/genetics , Signal Transduction , Transcription Factor AP-1/genetics
5.
Med Res Rev ; 42(1): 374-398, 2022 01.
Article in English | MEDLINE | ID: mdl-34309879

ABSTRACT

Despite having a rich history as a poison, arsenic and its compounds have also gained a great reputation as promising anticancer drugs. As a pioneer, arsenic trioxide has been approved for the treatment of acute promyelocytic leukemia. Many in vitro studies suggested that arsenic trioxide could also be used in the treatment of solid tumors. However, the transition from bench to bedside turned out to be challenging, especially in terms of the drug bioavailability and concentration reaching tumor tissues. To address these issues, nanomedicine tools have been proposed. As nanocarriers of arsenic trioxide, various materials have been examined including liposomes, polymer, and inorganic nanoparticles, and many other materials. This review gives an overview of the existing strategies of delivery of arsenic trioxide in cancer treatment with a focus on the drug encapsulation approaches and medicinal impact in the treatment of solid tumors. It focuses on the progress in the last years and gives an outlook and suggestions for further improvements including theragnostic approaches and targeted delivery.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Arsenic Trioxide/therapeutic use , Humans , Nanomedicine , Neoplasms/drug therapy
6.
Pediatr Blood Cancer ; 68(12): e29267, 2021 12.
Article in English | MEDLINE | ID: mdl-34347371

ABSTRACT

BACKGROUND: Refined therapy has helped to improve survival rates in rhabdoid tumors (RT). Prognosis for patients with chemoresistant, recurrent, or progressive RT remains dismal. Although decitabine, an epigenetically active agent, has mainly been evaluated in the management of hematologic malignancies in adults, safety in children has also been demonstrated repeatedly. MATERIALS AND METHODS: A retrospective series of patients who received decitabine upon relapse or progression following therapy according to the EU-RHAB regimen is presented. Due to the retrospective nature of analyses, response was defined as measurable regression of at least one lesion on imaging. 850k methylation profiling was done whenever tumor tissue was available. RESULTS: A total of 22 patients with RT of any anatomical localization were included. Most patients (19/22) presented with metastases. All received low-dose decitabine with or preceding conventional chemotherapy. Patients received a median of two (1-6) courses of decitabine; 27.3% (6/22) demonstrated a radiological response. Molecular analyses revealed increased methylation levels in tumors from responders. No excessive toxicity was observed. Clinical benefits for responders included eligibility for early phase trials or local therapy. Responders showed prolonged time to progression and overall survival. Due to small sample size, statistical correction for survivorship bias demonstrated no significant effect on survival for responders. CONCLUSIONS: Patients with RT demonstrate promising signs of antitumor activity after multiagent relapse therapy including decitabine. Analyses of methylation data suggest a specific effect on an epigenetic level. We propose to consider decitabine and other epigenetic drugs as candidates for further clinical investigations in RT.


Subject(s)
Rhabdoid Tumor , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/therapeutic use , Child , Decitabine/therapeutic use , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Prognosis , Retrospective Studies , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/genetics
7.
Acta Neuropathol ; 139(5): 913-936, 2020 05.
Article in English | MEDLINE | ID: mdl-31848709

ABSTRACT

Atypical teratoid/rhabdoid tumors (ATRT) are known for their heterogeneity concerning pathophysiology and outcome. However, predictive factors within distinct subgroups still need to be uncovered. Using multiplex immunofluorescent staining and single-cell RNA sequencing we unraveled distinct compositions of the immunological tumor microenvironment (TME) across ATRT subgroups. CD68+ cells predominantly infiltrate ATRT-SHH and ATRT-MYC and are a negative prognostic factor for patients' survival. Within the murine ATRT-MYC and ATRT-SHH TME, Cd68+ macrophages are core to intercellular communication with tumor cells. In ATRT-MYC distinct tumor cell phenotypes express macrophage marker genes. These cells are involved in the acquisition of chemotherapy resistance in our relapse xenograft mouse model. In conclusion, the tumor cell-macrophage interaction contributes to ATRT-MYC heterogeneity and potentially to tumor recurrence.


Subject(s)
Drug Resistance, Neoplasm/physiology , Macrophages/pathology , Neoplasm Recurrence, Local/pathology , Tumor Microenvironment/physiology , Animals , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Female , Humans , Male , Mice, Transgenic , Rhabdoid Tumor/genetics
8.
Mol Ther ; 27(5): 933-946, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30879952

ABSTRACT

Chimeric antigen receptor (CAR) engineering of T cells allows one to specifically target tumor cells via cell surface antigens. A candidate target in Ewing sarcoma is the ganglioside GD2, but heterogeneic expression limits its value. Here we report that pharmacological inhibition of Enhancer of Zeste Homolog 2 (EZH2) at doses reducing H3K27 trimethylation, but not cell viability, selectively and reversibly induces GD2 surface expression in Ewing sarcoma cells. EZH2 in Ewing sarcoma cells directly binds to the promoter regions of genes encoding for two key enzymes of GD2 biosynthesis, and EZH2 inhibition enhances expression of these genes. GD2 surface expression in Ewing sarcoma cells is not associated with distinct in vitro proliferation, colony formation, chemosensitivity, or in vivo tumorigenicity. Moreover, disruption of GD2 synthesis by gene editing does not affect its in vitro behavior. EZH2 inhibitor treatment sensitizes Ewing sarcoma cells to effective cytolysis by GD2-specific CAR gene-modified T cells. In conclusion, we report a clinically applicable pharmacological approach for enhancing efficacy of adoptively transferred GD2-redirected T cells against Ewing sarcoma, by enabling recognition of tumor cells with low or negative target expression.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Gangliosides/genetics , Receptors, Chimeric Antigen/genetics , Sarcoma, Ewing/drug therapy , Antigens, Surface/drug effects , Antigens, Surface/genetics , Benzamides/pharmacology , Biphenyl Compounds , Cell Line, Tumor , Cell Survival/drug effects , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Gangliosides/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Indoles/pharmacology , Morpholines , Promoter Regions, Genetic/genetics , Pyridones/pharmacology , Receptors, Chimeric Antigen/immunology , Sarcoma, Ewing/genetics , Sarcoma, Ewing/immunology , Sarcoma, Ewing/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
9.
Chemistry ; 25(57): 13189-13196, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31336004

ABSTRACT

Previous results revealed that arsenic trioxide might be used as promising therapeutic agent for the treatment of some solid tumours as atypical teratoid rhabdoid tumours (ATRT). However, in order to become an approved drug for solid tumour treatment, the active formulation has to get more efficient and feasible-but at the same time less toxic. One of the possibilities to achieve this dichotomy is to use nanomedicine tools. Herein, we report on the Zn-based metal-organic framework ZIF-8 (Zeolitic Imidazolate Framework-8) which turned out to be a promising candidate for the delivery of AsIII species. It conjointly features a high drug loading capacity and a prominent pH-triggered release behaviour. AsIII -loaded ZIF-8 nanoparticles coated and non-coated with polyethylene glycol were studied by XRPD, IR, Raman, TGA, TEM, EDX, CHN-elemental analysis, sorption analysis and ICP-OES, and their cytotoxicity was evaluated in vitro.


Subject(s)
Arsenic Trioxide/chemistry , Nanoparticles/chemistry , Neoplasms/physiopathology , Polyethylene Glycols/chemistry , Zeolites/chemistry , Drug Delivery Systems , Hydrogen-Ion Concentration
10.
Lancet Oncol ; 19(8): e419-e428, 2018 08.
Article in English | MEDLINE | ID: mdl-30102236

ABSTRACT

Paediatric CNS tumours are the most common cause of childhood cancer-related morbidity and mortality, and improvements in their diagnosis and treatment are needed. New genetic and epigenetic information about paediatric CNS tumours is transforming the field dramatically. For most paediatric CNS tumour entities, subgroups with distinct biological characteristics have been identified, and these characteristics are increasingly used to facilitate accurate diagnoses and therapeutic recommendations. Future treatments will be further tailored to specific molecular subtypes of disease, specific tumour predisposition syndromes, and other biological criteria. Successful biomaterial collection is a key requirement for the application of contemporary methodologies for the validation of candidate prognostic factors, the discovery of new biomarkers, the establishment of appropriate preclinical research models for targeted agents, a quicker clinical implementation of precision medicine, and for other therapeutic uses (eg, for immunotherapies). However, deficits in organisational structures and interdisciplinary cooperation are impeding the collection of high-quality biomaterial from CNS tumours in most centres. Practical, legal, and ethical guidelines for consent, storage, material transfer, biobanking, data sharing, and funding should be established by research consortia and local institutions to allow optimal collection of primary and subsequent tumour tissue, body fluids, and normal tissue. Procedures for the collection and storage of biomaterials and related data should be implemented according to the individual and organisational structures of the local institutions.


Subject(s)
Biological Specimen Banks/standards , Biomarkers, Tumor , Central Nervous System Neoplasms , Medical Oncology/standards , Translational Research, Biomedical/methods , Biological Specimen Banks/ethics , Biological Specimen Banks/organization & administration , Child , Female , Humans , Male , Medical Oncology/organization & administration , Medical Oncology/trends , Translational Research, Biomedical/organization & administration , Translational Research, Biomedical/standards
11.
Am J Med Genet A ; 173(4): 1017-1037, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168833

ABSTRACT

Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.


Subject(s)
Genetic Predisposition to Disease , Hematologic Neoplasms/diagnosis , Mutation , Neoplasm Proteins/genetics , Neoplasms/diagnosis , Adolescent , Child , Focus Groups/methods , Gene Expression , Genetic Counseling/ethics , Genetic Testing/methods , Genetics, Medical/history , Genetics, Medical/instrumentation , Genetics, Medical/methods , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , History, 21st Century , Humans , Neoplasms/genetics , Neoplasms/pathology , Societies, Medical/history , Syndrome
12.
Int J Mol Sci ; 18(7)2017 Jul 16.
Article in English | MEDLINE | ID: mdl-28714904

ABSTRACT

Rhabdoid tumors (RT) are malignant neoplasms of early childhood. Despite intensive therapy, survival is poor and new treatment approaches are required. The only recurrent mutations in these tumors affect SMARCB1 and less commonly SMARCA4, both subunits of the chromatin remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). Loss of these two core subunits alters the function of the SWI/SNF complex, resulting in tumor development. We hypothesized that inhibition of aberrant SWI/SNF function by selective blockade of the BRD9 subunit of the SWI/SNF complex would reduce tumor cell proliferation. The cytotoxic and anti-proliferative effects of two specific chemical probes (I-BRD9 and BI-9564) which target the bromodomain of SWI/SNF protein BRD9 were evaluated in 5 RT cell lines. Combinatorial effects of I-BRD9 and cytotoxic drugs on cell proliferation were evaluated by cytotoxicity assays. Single compound treatment of RT cells with I-BRD9 and BI-9564 resulted in decreased cell proliferation, G1-arrest and apoptosis. Combined treatment of doxorubicin or carboplatin with I-BRD9 resulted in additive to synergistic inhibitory effects on cell proliferation. In contrast, the combination of I-BRD9 with vincristine demonstrated the antagonistic effects of these two compounds. We conclude that the BRD9 bromodomain is an attractive target for novel therapies in this cancer.


Subject(s)
Cytostatic Agents/therapeutic use , Rhabdoid Tumor/drug therapy , Benzylamines , Carboplatin/pharmacology , Carboplatin/therapeutic use , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Synergism , Humans , Inhibitory Concentration 50 , Naphthyridines , Rhabdoid Tumor/pathology , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use
13.
Acta Neuropathol ; 131(6): 847-63, 2016 06.
Article in English | MEDLINE | ID: mdl-26920151

ABSTRACT

Dysembryoplastic neuroepithelial tumor (DNET) is a benign brain tumor associated with intractable drug-resistant epilepsy. In order to identify underlying genetic alterations and molecular mechanisms, we examined three family members affected by multinodular DNETs as well as 100 sporadic tumors from 96 patients, which had been referred to us as DNETs. We performed whole-exome sequencing on 46 tumors and targeted sequencing for hotspot FGFR1 mutations and BRAF p.V600E was used on the remaining samples. FISH, copy number variation assays and Sanger sequencing were used to validate the findings. By whole-exome sequencing of the familial cases, we identified a novel germline FGFR1 mutation, p.R661P. Somatic activating FGFR1 mutations (p.N546K or p.K656E) were observed in the tumor samples and further evidence for functional relevance was obtained by in silico modeling. The FGFR1 p.K656E mutation was confirmed to be in cis with the germline p.R661P variant. In 43 sporadic cases, in which the diagnosis of DNET could be confirmed on central blinded neuropathology review, FGFR1 alterations were also frequent and mainly comprised intragenic tyrosine kinase FGFR1 duplication and multiple mutants in cis (25/43; 58.1 %) while BRAF p.V600E alterations were absent (0/43). In contrast, in 53 cases, in which the diagnosis of DNET was not confirmed, FGFR1 alterations were less common (10/53; 19 %; p < 0.0001) and hotspot BRAF p.V600E (12/53; 22.6 %) (p < 0.001) prevailed. We observed overexpression of phospho-ERK in FGFR1 p.R661P and p.N546K mutant expressing HEK293 cells as well as FGFR1 mutated tumor samples, supporting enhanced MAP kinase pathway activation under these conditions. In conclusion, constitutional and somatic FGFR1 alterations and MAP kinase pathway activation are key events in the pathogenesis of DNET. These findings point the way towards existing targeted therapies.


Subject(s)
Brain Neoplasms/genetics , DNA Copy Number Variations/genetics , Glioma/genetics , Mutation/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Adolescent , Adult , Female , HEK293 Cells , Humans , MAP Kinase Signaling System/physiology , Male , Proto-Oncogene Proteins B-raf/genetics , Young Adult
14.
Pediatr Blood Cancer ; 63(8): 1451-3, 2016 08.
Article in English | MEDLINE | ID: mdl-27092963

ABSTRACT

We report the successful use of multiplex ligation-dependent probe amplification (MLPA) to detect heterozygous loss of SMARCB1/INI1/SNF5 in the germ line of an infant with a huge posterior fossa tumor. MLPA and Sanger sequencing of the SMARCB1 gene in the germ line may be useful for the initial diagnosis in a defined subgroup of infants with rhabdoid tumors, in which biopsies cannot be performed.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , Genetic Predisposition to Disease , Rhabdoid Tumor/diagnosis , Rhabdoid Tumor/genetics , SMARCB1 Protein/genetics , Central Nervous System Neoplasms/mortality , Gene Deletion , Humans , Infant , Multiplex Polymerase Chain Reaction , Rhabdoid Tumor/mortality
15.
J Neurosci ; 34(40): 13486-91, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25274825

ABSTRACT

SMARCA4 (BRG1) and SMARCB1 (INI1) are tumor suppressor genes that are crucially involved in the formation of malignant rhabdoid tumors, such as atypical teratoid/rhabdoid tumor (AT/RT). AT/RTs typically affect infants and occur at various sites of the CNS with a particular frequency in the cerebellum. Here, granule neurons and their progenitors represent the most abundant cell type and are known to give rise to a subset of medulloblastoma, a histologically similar embryonal brain tumor. To test how Smarc proteins influence the development of granule neurons and whether this population may serve as cellular origin for AT/RTs, we specifically deleted Smarca4 and Smarcb1 in cerebellar granule cell precursors. Respective mutant mice displayed severe ataxia and motor coordination deficits, but did not develop any tumors. In fact, they suffered from a severely hypoplastic cerebellum due to a significant inhibition of granule neuron precursor proliferation. Molecularly, this was accompanied by an enhanced activity of Wnt/ß-catenin signaling that, by itself, is known to cause a nearly identical phenotype. We further used an hGFAP-cre allele, which deleted Smarcb1 much earlier and in a wider neural precursor population, but we still did not detect any tumor formation in the CNS. In summary, our results emphasize cell-type-dependent roles of Smarc proteins and argue against cerebellar granule cells and other progeny of hGFAP-positive neural precursors as the cellular origin for AT/RTs.


Subject(s)
Cerebellum/growth & development , Chromosomal Proteins, Non-Histone/deficiency , DNA Helicases/deficiency , Gene Expression Regulation, Developmental/genetics , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Age Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cerebellum/cytology , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Neural Stem Cells/physiology , Neurons/metabolism , Nuclear Proteins/genetics , Phosphopyruvate Hydratase/metabolism , SMARCB1 Protein , Signal Transduction/genetics , Transcription Factors/genetics , Wnt Proteins/metabolism
16.
Pediatr Blood Cancer ; 62(5): 897-900, 2015 May.
Article in English | MEDLINE | ID: mdl-25663425

ABSTRACT

We report on how MLPA and Sequencing of SMARCB1/INI1/SNF5 might be applied for initial diagnosis of rhabdoid tumor patients. These techniques were successfully used to detect loss of SMARCB1 in tumor cells of the ascites in a 3-month-old patient in which tumor biopsy could not initially be made due to life threatening intraabdominal bleedings.


Subject(s)
Abdominal Neoplasms/diagnosis , Ascites/pathology , Biomarkers, Tumor/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Rhabdoid Tumor/diagnosis , Transcription Factors/metabolism , Abdominal Neoplasms/genetics , Abdominal Neoplasms/metabolism , Ascites/genetics , Ascites/metabolism , Biomarkers, Tumor/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Female , Humans , Immunoenzyme Techniques , In Situ Hybridization, Fluorescence , Infant , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Prognosis , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , SMARCB1 Protein , Transcription Factors/genetics
17.
Int J Cancer ; 135(4): 989-95, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24420698

ABSTRACT

Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenicals/pharmacology , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/metabolism , Oxides/pharmacology , Rhabdoid Tumor/drug therapy , Transcription Factors/metabolism , Animals , Apoptosis , Arsenic Trioxide , Cell Cycle , Cell Proliferation , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , Hedgehog Proteins/metabolism , Humans , Mice , Mice, SCID , Neoplasm Transplantation , Prognosis , Signal Transduction , Zinc Finger Protein GLI1
18.
J Neurooncol ; 116(2): 237-49, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24264533

ABSTRACT

Epigenetic alterations are common events in cancer. Using a genome wide methylation screen (Restriction Landmark Genomic Scanning-RLGS) we identified the gene for the dopamine receptor D4 (DRD4) as tumor-specific methylated. As DRD4 is involved in early brain development and may thus be involved in developmentally dependent tumors of the CNS in children epigenetic deregulation of DRD4 and its functional consequences were analyzed in vitro. CpG methylation of DRD4 was detected in 18/24 medulloblastomas, 23/29 ependymomas, 6/6 high-grade gliomas, 7/10 CNS PNET and 8/8 cell lines by qCOBRA and bisulfite sequencing. Real-time RT-PCR demonstrated a significantly inferior expression of DRD4 in primary tumors compared to cell lines and non-malignant control tissues. Epigenetic deregulation of DRD4 was analyzed in reexpression experiments and restoration of DRD4 was observed in medulloblastoma (MB) cells treated with 5-Aza-CdR. Reexpression was not accompanied by demethylation of the DRD4 promoter but by a significant decrease of H3K27me3 and of bound enhancer of zeste homologue 2 (EZH2). Knockdown of EZH2 demonstrated DRD4 as a direct target for inhibition by EZH2. Stimulation of reexpressed DRD4 resulted in an activation of ERK1/2. Our analyses thus disclose that DRD4 is epigenetically repressed in CNS tumors of childhood. DRD4 is a direct target of EZH2 in MB cell lines. EZH2 appears to dominate over aberrant DNA methylation in the epigenetic inhibition of DRD4, which eventually leads to inhibition of a DRD4-mediated stimulation of the ERK1/2 kinase pathway.


Subject(s)
Central Nervous System Neoplasms/pathology , Epigenesis, Genetic/physiology , Receptors, Dopamine D4/metabolism , Apoptosis/drug effects , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Central Nervous System Neoplasms/metabolism , Child , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Decitabine , Dose-Response Relationship, Drug , Epigenesis, Genetic/drug effects , Female , Humans , Hydroxamic Acids/therapeutic use , Male , Medulloblastoma/pathology , Neuroectodermal Tumors, Primitive/pathology , Receptors, Dopamine D4/genetics , Sulfites/pharmacology , Tumor Cells, Cultured
19.
Pediatr Blood Cancer ; 61(2): 306-11, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24174393

ABSTRACT

BACKGROUND: Busulfan (Bu) is a DNA-alkylating agent used for myeloablative conditioning in stem cell transplantation in children and adults. While the use of intravenous rather than oral administration of Bu has reduced inter-individual variability in plasma levels, toxicity still occurs frequently after hematopoietic stem cell transplantation (HSCT). Toxicity (especially hepatotoxic effects) of intravenous (IV) Bu may be related to both Bu and/or N,N-dimethylacetamide (DMA), the solvent of Bu. In this study, we assessed the relation between the exposure of Bu and DMA with regards to the clinical outcome in children from two cohorts. METHODS: In a two-centre study Bu and DMA AUC (area under the curve) were correlated in pediatric stem cell recipients to the risk of developing SOS and to the clinical outcome. RESULT: In patients receiving Bu four times per day Bu levels >1,500 µmol/L minute correlate to an increased risk of developing a SOS. In the collective cohort, summarizing data of all 53 patients of this study, neither high area under the curve (AUC) of Bu nor high AUC of DMA appears to be an independent risk factor for the development of SOS in children. CONCLUSION: In this study neither Bu nor DMA was observed as an independent risk factor for the development of SOS. To identify subgroups (e.g., infants), in which Bu or DMA might be risk factors for the induction of SOS, larger cohorts have to be evaluated.


Subject(s)
Acetamides/adverse effects , Antineoplastic Agents, Alkylating/adverse effects , Busulfan/adverse effects , Hematologic Neoplasms/complications , Hematopoietic Stem Cell Transplantation/adverse effects , Hepatic Veno-Occlusive Disease/chemically induced , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols , Child , Child, Preschool , Combined Modality Therapy , Cryoprotective Agents/adverse effects , Female , Follow-Up Studies , Hematologic Neoplasms/therapy , Hepatic Veno-Occlusive Disease/pathology , Humans , Infant , Male , Prognosis , Retrospective Studies , Risk Factors , Transplantation, Homologous , Young Adult
20.
BMC Cancer ; 13: 286, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23764045

ABSTRACT

BACKGROUND: Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. METHODS: Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. RESULTS: HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. CONCLUSION: Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylases/metabolism , Rhabdoid Tumor/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Doxorubicin/administration & dosage , Drug Synergism , Fenretinide/administration & dosage , Humans , Hydroxamic Acids/administration & dosage , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Rhabdoid Tumor/pathology , Vorinostat
SELECTION OF CITATIONS
SEARCH DETAIL