Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Psychiatry ; 25(12): 3337-3349, 2020 12.
Article in English | MEDLINE | ID: mdl-31501510

ABSTRACT

Post-traumatic stress disorder (PTSD) impacts many veterans and active duty soldiers, but diagnosis can be problematic due to biases in self-disclosure of symptoms, stigma within military populations, and limitations identifying those at risk. Prior studies suggest that PTSD may be a systemic illness, affecting not just the brain, but the entire body. Therefore, disease signals likely span multiple biological domains, including genes, proteins, cells, tissues, and organism-level physiological changes. Identification of these signals could aid in diagnostics, treatment decision-making, and risk evaluation. In the search for PTSD diagnostic biomarkers, we ascertained over one million molecular, cellular, physiological, and clinical features from three cohorts of male veterans. In a discovery cohort of 83 warzone-related PTSD cases and 82 warzone-exposed controls, we identified a set of 343 candidate biomarkers. These candidate biomarkers were selected from an integrated approach using (1) data-driven methods, including Support Vector Machine with Recursive Feature Elimination and other standard or published methodologies, and (2) hypothesis-driven approaches, using previous genetic studies for polygenic risk, or other PTSD-related literature. After reassessment of ~30% of these participants, we refined this set of markers from 343 to 28, based on their performance and ability to track changes in phenotype over time. The final diagnostic panel of 28 features was validated in an independent cohort (26 cases, 26 controls) with good performance (AUC = 0.80, 81% accuracy, 85% sensitivity, and 77% specificity). The identification and validation of this diverse diagnostic panel represents a powerful and novel approach to improve accuracy and reduce bias in diagnosing combat-related PTSD.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Biomarkers , Brain , Humans , Male , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/genetics
2.
Addict Biol ; 23(5): 1145-1159, 2018 09.
Article in English | MEDLINE | ID: mdl-29082582

ABSTRACT

Excessive alcohol use is extremely prevalent in the United States, particularly among trauma-exposed individuals. While several studies have examined genetic influences on alcohol use and related problems, this has not been studied in the context of trauma-exposed populations. We report results from a genome-wide association study of alcohol consumption and associated problems as measured by the alcohol use disorders identification test (AUDIT) in a trauma-exposed cohort. Results indicate a genome-wide significant association between total AUDIT score and rs1433375 [N = 1036, P = 2.61 × 10-8 (dominant model), P = 7.76 × 10-8 (additive model)], an intergenic single-nucleotide polymorphism located 323 kb upstream of the sodium channel and clathrin linker 1 (SCLT1) at 4q28. rs1433375 was also significant in a meta-analysis of two similar, but independent, cohorts (N = 1394, P = 0.0004), the Marine Resiliency Study and Systems Biology PTSD Biomarkers Consortium. Functional analysis indicated that rs1433375 was associated with SCLT1 gene expression and cortical-cerebellar functional connectivity measured via resting state functional magnetic resonance imaging. Together, findings suggest a role for sodium channel regulation and cerebellar functioning in alcohol use behavior. Identifying mechanisms underlying risk for problematic alcohol use in trauma-exposed populations is critical for future treatment and prevention efforts.


Subject(s)
Alcoholism/complications , Alcoholism/genetics , Genome-Wide Association Study/methods , Sodium Channels/genetics , Stress Disorders, Post-Traumatic/complications , Adolescent , Adult , Black or African American/statistics & numerical data , Aged , Alcoholism/physiopathology , Brain/physiopathology , Cohort Studies , Female , Georgia , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
3.
Brain Behav Immun ; 61: 176-183, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27884623

ABSTRACT

Toxoplasma gondii (TOXO) is a neuroinvasive protozoan parasite that induces the formation of persistent cysts in mammalian brains. It infects approximately 1.1million people in the United States annually. Latent TOXO infection is implicated in the etiology of psychiatric disorders, especially schizophrenia (SCZ), and has been correlated with modestly impaired cognition. The acoustic startle response (ASR) is a reflex seen in all mammals. It is mediated by a simple subcortical circuit, and provides an indicator of neural function. We previously reported the association of TOXO with slowed acoustic startle latency, an index of neural processing speed, in a sample of schizophrenia and healthy control subjects. The alterations in neurobiology with TOXO latent infection may not be specific to schizophrenia. Therefore we examined TOXO in relation to acoustic startle in an urban, predominately African American, population with mixed psychiatric diagnoses, and healthy controls. Physiological and diagnostic data along with blood samples were collected from 364 outpatients treated at an inner-city hospital. TOXO status was determined with an ELISA assay for TOXO-specific IgG. A discrete titer was calculated based on standard cut-points as an indicator of seropositivity, and the TOXO-specific IgG concentration served as serointensity. A series of linear regression models were used to assess the association of TOXO seropositivity and serointensity with ASR magnitude and latency in models adjusting for demographics and psychiatric diagnoses (PTSD, major depression, schizophrenia, psychosis, substance abuse). ASR magnitude was 11.5% higher in TOXO seropositive subjects compared to seronegative individuals (p=0.01). This effect was more pronounced in models with TOXO serointensity that adjusted for sociodemographic covariates (F=7.41, p=0.0068; F=10.05, p=0.0017), and remained significant when psychiatric diagnoses were stepped into the models. TOXO showed no association with startle latency (t=0.49, p=0.63) in an unadjusted model, nor was TOXO associated with latency in models that included demographic factors. After stepping in individual psychiatric disorders, we found a significant association of latency with a diagnosis of PTSD (F=5.15, p=0.024), but no other psychiatric diagnoses, such that subjects with PTSD had longer startle latency. The mechanism by which TOXO infection is associated with high startle magnitude is not known, but possible mechanisms include TOXO cyst burden in the brain, parasite recrudescence, or molecular mimicry of a host epitope by TOXO. Future studies will focus on the neurobiology underlying the effects of latent TOXO infection as a potential inroad to the development of novel treatment targets for psychiatric disease.


Subject(s)
Reflex, Startle/immunology , Social Environment , Toxoplasma/immunology , Toxoplasmosis/immunology , Urban Population , Acoustic Stimulation , Adult , Black or African American , Female , Humans , Male , Middle Aged
4.
Nature ; 470(7335): 492-7, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21350482

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP-PAC1 receptor pathway has a role in human psychological stress responses, such as post-traumatic stress disorder (PTSD). Here we find, in heavily traumatized subjects, a sex-specific association of PACAP blood levels with fear physiology, PTSD diagnosis and symptoms in females. We examined 44 single nucleotide polymorphisms (SNPs) spanning the PACAP (encoded by ADCYAP1) and PAC1 (encoded by ADCYAP1R1) genes, demonstrating a sex-specific association with PTSD. A single SNP in a putative oestrogen response element within ADCYAP1R1, rs2267735, predicts PTSD diagnosis and symptoms in females only. This SNP also associates with fear discrimination and with ADCYAP1R1 messenger RNA expression in human brain. Methylation of ADCYAP1R1 in peripheral blood is also associated with PTSD. Complementing these human data, ADCYAP1R1 mRNA is induced with fear conditioning or oestrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1 pathway are involved in abnormal stress responses underlying PTSD. These sex-specific effects may occur via oestrogen regulation of ADCYAP1R1. PACAP levels and ADCYAP1R1 SNPs may serve as useful biomarkers to further our mechanistic understanding of PTSD.


Subject(s)
Genetic Predisposition to Disease/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/blood , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Stress Disorders, Post-Traumatic/blood , Stress Disorders, Post-Traumatic/genetics , Amygdala/metabolism , Animals , Conditioning, Classical/physiology , CpG Islands/genetics , DNA Methylation , Estrogens/metabolism , Estrogens/pharmacology , Fear/physiology , Female , Gene Expression Regulation/drug effects , Genetic Association Studies , Humans , Male , Mice , Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Response Elements/genetics , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Sex Characteristics , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/psychology
5.
Am J Med Genet B Neuropsychiatr Genet ; 162B(3): 262-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23505260

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor (PAC1) play a critical role in biological processes that mediate stress response and have been implicated in psychological outcome following trauma. Our previous work [Ressler et al. (2011); Nature 470:492-497] demonstrated that a variant, rs2267735, in the gene encoding PAC1 (ADCYAP1R1) is associated with post-traumatic stress disorder (PTSD) in a primarily African-American cohort of highly traumatized females. We sought to extend and replicate our previous finding in a similarly trauma-exposed, replicate sample of 1,160 African-American adult male and female patients. Self-reported psychiatric measures were collected, and DNA was obtained for genetic analysis. Using linear regression models to test for association with PTSD symptom severity under an additive (allelic) model, we found a genotype × trauma interaction in females (P < 0.001), but not males (P > 0.1); however, there was no main effect of genotype as in our previous study. The observed interaction suggests a genetic association that increases with the degree of trauma exposure in females only. This interaction remained significant in females, but not males, after controlling for age (P < 0.001), income (P < 0.01), past substance abuse (P < 0.001), depression severity (P = 0.02), or child abuse (P < 0.0005), and all five combined (P = 0.01). No significant effects of genotype (or interactions) were found when modeling depression severity when controlling for comorbid PTSD symptom severity (P > 0.1), demonstrating the relative specificity of this variant for PTSD symptoms. A meta-analysis with the previously reported African-American samples revealed a strong association between PTSD symptom severity and the interaction between trauma and genotype in females (N = 1424, P < 0.0001).


Subject(s)
Genotype , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Stress Disorders, Post-Traumatic/ethnology , Stress Disorders, Post-Traumatic/genetics , Stress, Psychological/genetics , Adolescent , Adult , Black or African American , Aged , Alleles , Child Abuse/psychology , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Regression Analysis , Sex Factors , Stress Disorders, Post-Traumatic/psychology , Young Adult
6.
Am J Med Genet B Neuropsychiatr Genet ; 162B(3): 283-292, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23505265

ABSTRACT

A non-synonymous, single nucleotide polymorphism (SNP) in the gene coding for steroid 5-α-reductase type 2 (SRD5A2) is associated with reduced conversion of testosterone to dihydrotestosterone (DHT). Because SRD5A2 participates in the regulation of testosterone and cortisol metabolism, hormones shown to be dysregulated in patients with PTSD, we examined whether the V89L variant (rs523349) influences risk for post-traumatic stress disorder (PTSD). Study participants (N = 1,443) were traumatized African-American patients of low socioeconomic status with high rates of lifetime trauma exposure recruited from the primary care clinics of a large, urban hospital. PTSD symptoms were measured with the post-traumatic stress symptom scale (PSS). Subjects were genotyped for the V89L variant (rs523349) of SRD5A2. We initially found a significant sex-dependent effect of genotype in male but not female subjects on symptoms. Associations with PTSD symptoms were confirmed using a separate internal replication sample with identical methods of data analysis, followed by pooled analysis of the combined samples (N = 1,443, sex × genotype interaction P < 0.002; males: n = 536, P < 0.001). These data support the hypothesis that functional variation within SRD5A2 influences, in a sex-specific way, the severity of post-traumatic stress symptoms and risk for diagnosis of PTSD.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/physiology , Polymorphism, Genetic , Stress Disorders, Post-Traumatic/genetics , Adult , Black or African American , Depression/diagnosis , Depression/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Hydrocortisone/metabolism , Male , Phenotype , Sex Factors , Stress Disorders, Post-Traumatic/ethnology , Surveys and Questionnaires , Testosterone/metabolism , Wounds and Injuries
7.
Psychoneuroendocrinology ; 119: 104749, 2020 09.
Article in English | MEDLINE | ID: mdl-32554173

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with dysregulation of the neuroendocrine system, including cortisol, allopregnanolone, and pregnanolone. Preliminary evidence from animal models suggests that baseline levels of these biomarkers may predict response to PTSD treatment. We report the change in biomarkers over the course of PTSD treatment. Biomarkers were sampled from individuals participating in (1) a randomized controlled trial comparing a web-version of Prolonged Exposure (Web-PE) therapy to in-person Present-Centered Therapy (PCT) and (2) from individuals participating in a nonrandomized effectiveness study testing PE delivered in-person as part of an intensive outpatient PTSD program. We found that higher cortisol reactivity during script-driven imagery was associated with higher baseline PTSD severity and that baseline allopregnanolone, pregnanolone, and cortisol reactivity were associated with PTSD treatment responder status over the course of intensive outpatient treatment. These findings demonstrate that peripherally assessed biomarkers are associated with PTSD severity and likelihood of successful treatment outcome of PE delivered daily over two weeks. These assessments could be used to determine which patients are likely to respond to treatment and which patients require augmentation to increase the likelihood of optimal response to PTSD treatment.


Subject(s)
Biomarkers/metabolism , Implosive Therapy , Military Personnel , Neurosecretory Systems/metabolism , Stress Disorders, Post-Traumatic/therapy , Adult , Afghan Campaign 2001- , Biomarkers/analysis , Female , History, 20th Century , History, 21st Century , Humans , Hydrocortisone/analysis , Hydrocortisone/metabolism , Implosive Therapy/methods , Iraq War, 2003-2011 , Male , Middle Aged , Military Personnel/psychology , Saliva/chemistry , Saliva/metabolism , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/metabolism , Time Factors , Treatment Outcome , United States
8.
Front Psychiatry ; 7: 156, 2016.
Article in English | MEDLINE | ID: mdl-27683563

ABSTRACT

Both childhood trauma and a functional catechol-O-methyltransferase (COMT) genetic polymorphism have been associated with posttraumatic stress disorder (PTSD) and depression; however, it is still unclear whether the two interact and how this interaction relates to long-term risk or resilience. Imaging and genotype data were collected on 73 highly traumatized women. DNA extracted from saliva was used to determine COMT genotype (Val/Val, n = 38, Met carriers, n = 35). Functional MRI data were collected during a Go/NoGo task to investigate the neurocircuitry underlying response inhibition. Self-report measures of adult and childhood trauma exposure, PTSD and depression symptom severity, and resilience were collected. Childhood trauma was found to interact with COMT genotype to impact inhibition-related hippocampal activation. In Met carriers, more childhood trauma was associated with decreased hippocampal activation, whereas in the Val/Val group childhood trauma was related to increased hippocampal activation. Second, hippocampal activation correlated negatively with PTSD and depression symptoms and positively with trait resilience. Moreover, hippocampal activation mediated the relationship between childhood trauma and psychiatric risk or resilience in the Val/Val, but not in the Met carrier group. These data reveal a potential mechanism by which childhood trauma and COMT genotype interact to increase risk for trauma-related psychopathology or resilience. Hippocampal recruitment during inhibition may improve the ability to use contextual information to guide behavior, thereby enhancing resilience in trauma-exposed individuals. This finding may contribute to early identification of individuals at risk and suggests a mechanism that can be targeted in future studies aiming to prevent or limit negative outcomes.

10.
J Clin Psychiatry ; 75(12): 1380-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25188543

ABSTRACT

BACKGROUND: Civilian posttraumatic stress disorder (PTSD) and combat PTSD are major public health concerns. Although a number of psychosocial risk factors have been identified related to PTSD risk, there are no accepted, robust biological predictors that identify who will develop PTSD or who will respond to early intervention following trauma. We wished to examine whether genetic risk for PTSD can be mitigated with an early intervention. METHOD: 65 emergency department patients recruited in 2009-2010 at Grady Memorial Hospital in Atlanta, Georgia, who met criterion A of DSM-IV PTSD received either 3 sessions of an exposure intervention, beginning in the emergency department shortly after trauma exposure or assessment only. PTSD symptoms were assessed 4 and 12 weeks after trauma exposure. A composite additive risk score was derived from polymorphisms in 10 previously identified genes associated with stress-response (ADCYAP1R1, COMT, CRHR1, DBH, DRD2, FAAH, FKBP5, NPY, NTRK2, and PCLO), and gene x treatment effects were examined. The intervention included 3 sessions of imaginal exposure to the trauma memory and additional exposure homework. The primary outcome measure was the PTSD Symptom Scale-Interview Version or DSM-IV-based PTSD diagnosis in patients related to genotype and treatment group. RESULTS: A gene x intervention x time effect was detected for individual polymorphisms, in particular the PACAP receptor, ADCYAP1R1, as well as with a combined genotype risk score created from independent SNP markers. Subjects who did not receive treatment had higher symptoms than those who received intervention. Furthermore, subjects with the "risk" genotypes who did not receive intervention had higher PTSD symptoms compared to those with the "low-risk" or "resilience" genotypes or those who received intervention. Additionally, PTSD symptoms correlated with level of genetic risk at week 12 (P < .005) in the assessment-only group, but with no relationship in the intervention group, even after controlling for age, sex, race, education, income, and childhood trauma. Using logistic regression, the number of risk alleles was significantly associated with likelihood of PTSD diagnosis at week 12 (P < .05). CONCLUSIONS: This pilot prospective study suggests that combined genetic variants may serve to predict those most at risk for developing PTSD following trauma. A psychotherapeutic intervention initiated in the emergency department within hours of the trauma may mitigate this risk. The role of genetic predictors of risk and resilience should be further evaluated in larger, prospective intervention and prevention trials. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT00895518.


Subject(s)
Early Medical Intervention , Genetic Predisposition to Disease/prevention & control , Implosive Therapy , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/prevention & control , Adult , Emergency Service, Hospital , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Prospective Studies , Stress Disorders, Post-Traumatic/therapy , Treatment Outcome , Young Adult
11.
Front Behav Neurosci ; 7: 30, 2013.
Article in English | MEDLINE | ID: mdl-23596403

ABSTRACT

The catechol-O-methyltransferase (COMT) enzyme is critical for the catabolic regulation of synaptic dopamine, resulting in altered cortical functioning. The COMT Val(158)Met polymorphism has been implicated in human mental illness, with Met/Met homozygotes associated with increased susceptibility to posttraumatic stress disorder (PTSD). Our primary objective was to examine the intermediate phenotype of fear inhibition in PTSD stratified by COMT genotype (Met/Met, Val/Met, and Val/Val) and differential gene regulation via methylation status at CpG sites in the COMT promoter region. More specifically, we examined the potential interaction of COMT genotype and PTSD diagnosis on fear-potentiated startle during fear conditioning and extinction and COMT DNA methylation levels (as determined using genomic DNA isolated from whole blood). Participants were recruited from medical and gynecological clinics of an urban hospital in Atlanta, GA, USA. We found that individuals with the Met/Met genotype demonstrated higher fear-potentiated startle to the CS- (safety signal) and during extinction of the CS+ (danger signal) compared to Val/Met and Val/Val genotypes. The PTSD+ Met/Met genotype group had the greatest impairment in fear inhibition to the CS- (p = 0.006), compared to Val carriers. In addition, the Met/Met genotype was associated with DNA methylation at four CpG sites, two of which were associated with impaired fear inhibition to the safety signal. These results suggest that multiple differential mechanisms for regulating COMT function - at the level of protein structure via the Val(158)Met genotype and at the level of gene regulation via differential methylation - are associated with impaired fear inhibition in PTSD.

12.
Biol Psychiatry ; 72(1): 19-24, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22502987

ABSTRACT

BACKGROUND: Women are twice as likely to develop posttraumatic stress disorder (PTSD) than men. As shown in our previous work, the inability to suppress fear responses in safe conditions may be a biomarker for PTSD. Low estrogen in naturally cycling women is associated with deficits in fear extinction. On the basis of these findings, we have now examined the influence of estrogen levels on fear extinction in women with and without PTSD. METHODS: We measured fear-potentiated startle during fear conditioning and extinction in women. The study sample (N = 81) was recruited from an urban, highly traumatized civilian population at Grady Memorial Hospital in Atlanta, Georgia. We assayed serum estrogen levels and used a median split to divide the sample into high and low estradiol (E(2)) groups. Seventeen of 41 women (41.5%) in the low E(2) group and 15 of 40 women (37.5%) met criteria for PTSD in the high E(2) group. RESULTS: The results showed that all groups had equivalent levels of fear conditioning. However, we found significant interaction effects between high versus low E(2) groups and PTSD diagnosis [F(1,71) = 4.55, p < .05] on extinction. Among women with low estrogen levels, fear-potentiated startle was higher during extinction in the PTSD group compared with traumatized control women [F(1,38) = 5.04, p < .05]. This effect was absent in the High E(2) group. CONCLUSION: This study suggests that low estrogen may be a vulnerability factor for development of PTSD in women with trauma histories. Research on the role of estrogen in fear regulation may provide insight into novel treatment strategies for PTSD.


Subject(s)
Estrogens/blood , Extinction, Psychological , Fear/psychology , Stress Disorders, Post-Traumatic/blood , Stress Disorders, Post-Traumatic/psychology , Adolescent , Adult , Aged , Female , Georgia , Humans , Middle Aged , Reflex, Startle , Urban Population/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL