Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(23): 4202-4204, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065060

ABSTRACT

In a recent issue of Cell, Mossmann et al.1 describe a novel role for an emerging cancer target, RNA-binding motif protein 39, as a metabolic sensor of the conditionally essential amino acid arginine.


Subject(s)
Neoplasms , RNA-Binding Proteins , Humans , Alternative Splicing , Gene Expression Regulation , Neoplasms/genetics , RNA Splicing , RNA-Binding Proteins/metabolism
2.
EMBO J ; 43(7): 1187-1213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383863

ABSTRACT

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.


Subject(s)
Carbon , Histones , Animals , Mice , Histones/metabolism , Carbon/metabolism , Lipogenesis , Chromatin , Acetyltransferases/metabolism , Lipids , Acetylation , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
3.
Arch Toxicol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755480

ABSTRACT

The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.

4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33883278

ABSTRACT

Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.


Subject(s)
Neoplasms/drug therapy , Stress, Physiological/drug effects , Antineoplastic Agents/pharmacology , Autophagy/physiology , Cell Line, Tumor , Humans , Metabolome/genetics , Mitochondria/metabolism , Multiple Myeloma/metabolism , Neoplasms/metabolism , Neoplasms/physiopathology , Proteasome Inhibitors/pharmacology , Proteolysis , Proteome/genetics , Systems Analysis , Transcriptome/genetics
5.
Hum Mol Genet ; 29(23): 3830-3844, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33283231

ABSTRACT

Human metabolism is influenced by genetic and environmental factors. Previous studies have identified over 23 loci associated with more than 26 urine metabolites levels in adults, which are known as urinary metabolite quantitative trait loci (metabQTLs). The aim of the present study is the identification for the first time of urinary metabQTLs in children and their interaction with dietary patterns. Association between genome-wide genotyping data and 44 urine metabolite levels measured by proton nuclear magnetic resonance spectroscopy was tested in 996 children from the Human Early Life Exposome project. Twelve statistically significant urine metabQTLs were identified, involving 11 unique loci and 10 different metabolites. Comparison with previous findings in adults revealed that six metabQTLs were already known, and one had been described in serum and three were involved the same locus as other reported metabQTLs but had different urinary metabolites. The remaining two metabQTLs represent novel urine metabolite-locus associations, which are reported for the first time in this study [single nucleotide polymorphism (SNP) rs12575496 for taurine, and the missense SNP rs2274870 for 3-hydroxyisobutyrate]. Moreover, it was found that urinary taurine levels were affected by the combined action of genetic variation and dietary patterns of meat intake as well as by the interaction of this SNP with beverage intake dietary patterns. Overall, we identified 12 urinary metabQTLs in children, including two novel associations. While a substantial part of the identified loci affected urinary metabolite levels both in children and in adults, the metabQTL for taurine seemed to be specific to children and interacted with dietary patterns.


Subject(s)
Diet , Metabolome , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Urinalysis/methods , Child , Female , Genome-Wide Association Study , Humans , Male
6.
BMC Med ; 21(1): 80, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36855092

ABSTRACT

BACKGROUND: Amino acid metabolism is dysregulated in colorectal cancer patients; however, it is not clear whether pre-diagnostic levels of amino acids are associated with subsequent risk of colorectal cancer. We investigated circulating levels of amino acids in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) and UK Biobank cohorts. METHODS: Concentrations of 13-21 amino acids were determined in baseline fasting plasma or serum samples in 654 incident colorectal cancer cases and 654 matched controls in EPIC. Amino acids associated with colorectal cancer risk following adjustment for the false discovery rate (FDR) were then tested for associations in the UK Biobank, for which measurements of 9 amino acids were available in 111,323 participants, of which 1221 were incident colorectal cancer cases. RESULTS: Histidine levels were inversely associated with colorectal cancer risk in EPIC (odds ratio [OR] 0.80 per standard deviation [SD], 95% confidence interval [CI] 0.69-0.92, FDR P-value=0.03) and in UK Biobank (HR 0.93 per SD, 95% CI 0.87-0.99, P-value=0.03). Glutamine levels were borderline inversely associated with colorectal cancer risk in EPIC (OR 0.85 per SD, 95% CI 0.75-0.97, FDR P-value=0.08) and similarly in UK Biobank (HR 0.95, 95% CI 0.89-1.01, P=0.09) In both cohorts, associations changed only minimally when cases diagnosed within 2 or 5 years of follow-up were excluded. CONCLUSIONS: Higher circulating levels of histidine were associated with a lower risk of colorectal cancer in two large prospective cohorts. Further research to ascertain the role of histidine metabolism and potentially that of glutamine in colorectal cancer development is warranted.


Subject(s)
Amino Acids , Colorectal Neoplasms , Humans , Glutamine , Histidine , Biological Specimen Banks , Prospective Studies , Colorectal Neoplasms/epidemiology , United Kingdom/epidemiology
7.
Mol Biol Rep ; 50(6): 5185-5193, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119413

ABSTRACT

BACKGROUND: Breast cancer (BC) is the second leading cause of cancer-related mortality among women. Beyond the established tumourigenic role of genetic mutations, metabolic reprogramming is another key cancer hallmark. Glucose metabolism in particular is known to be prominently altered in tumours, in order to support biomass accumulation and cancer cell survival. The tumor suppressor microRNA (miRNA) miR-22 has been previously associated with a plethora of BC phenotypes such as growth, invasion-metastasis, and regulation of metabolic phenotypes such as lipid and folate metabolism. In this study, we aimed to investigate the role of miR-22 in the regulation of glucose metabolism in BC cells. METHODS AND RESULTS: Here we examined how miR-22 affects glucose metabolism in the MCF-7 BC cells. We found that over-expression of miR-22 caused a reduced glycolytic rate in these cells. Moreover, the miRNA also rendered MCF-7 cells more sensitive to lower glucose levels. We next unbiasedly screened the transcript levels of 84 genes relevant to glucose metabolism using the Human Glucose RT2 Profiler PCR Array. Interestingly, the strongest effect identified by this screen was the upregulation of genes involved in glycogen synthesis and the repression of gene involved in glycogen catabolism. Examination of publicly available transcriptomic datasets confirmed the correlations between expression of miR-22 and these glycogen metabolism genes in BC cells. CONCLUSION: This study has generated evidence for a regulatory role of miR-22 in glucose and glycogen metabolism, expanding the involvement of this miRNA in BC metabolic reprogramming.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/metabolism , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , MCF-7 Cells , Cell Proliferation/genetics , Glucose , Glycogen/metabolism , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics
8.
Br J Cancer ; 126(3): 502-513, 2022 02.
Article in English | MEDLINE | ID: mdl-35022525

ABSTRACT

BACKGROUND: Reliable prognostic biomarkers to distinguish indolent from aggressive prostate cancer (PCa) are lacking. Many studies investigated microRNAs (miRs) as PCa prognostic biomarkers, often reporting inconsistent findings. We present a systematic review of these; also systematic reanalysis of public miR-profile datasets to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy. METHODS: Independent PubMed searches were performed for relevant articles from January 2007 to December 2019. For the review, 128 studies were included. Pooled-hazard-ratios (HRs) for miRs in multiple studies were calculated using a random-effects model (REM). For the reanalysis, five studies were included and Cox proportional-hazard models, testing miR association with BCR, performed for miRs profiled in all. RESULTS: Systematic review identified 120 miRs as prognostic. Five (let-7b-5p, miR-145-5p, miR152-3p, miR-195-5p, miR-224-5p) were consistently associated with progression in multiple cohorts/studies. In the reanalysis, ten (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p, miR-582-5p) were significantly prognostic of BCR. Of these, miR-148a-3p (HR = 0.80/95% CI = 0.68-0.94) and miR-582-5p (HR = 0.73/95% CI = 0.61-0.87) were also reported in prior publication(s) in the review. CONCLUSIONS: Fifteen miRs were consistently associated with disease progression in multiple publications or datasets. Further research into their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers.


Subject(s)
Biomarkers, Tumor/genetics , MicroRNAs/genetics , Prostatectomy/methods , Prostatic Neoplasms/pathology , Cohort Studies , Humans , Male , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Survival Rate
9.
Br J Cancer ; 127(5): 937-947, 2022 09.
Article in English | MEDLINE | ID: mdl-35618788

ABSTRACT

BACKGROUND: We evaluated the therapeutic potential of combining the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 with the mitochondrial respiratory Complex I inhibitor IACS-010759, for the treatment of diffuse large B-cell lymphoma (DLBCL), a potential clinically actionable strategy to target tumour metabolism. METHODS: AZD3965 and IACS-010759 sensitivity were determined in DLBCL cell lines and tumour xenograft models. Lactate concentrations, oxygen consumption rate and metabolomics were examined as mechanistic endpoints. In vivo plasma concentrations of IACS-010759 in mice were determined by LC-MS to select a dose that reflected clinically attainable concentrations. RESULTS: In vitro, the combination of AZD3965 and IACS-010759 is synergistic and induces DLBCL cell death, whereas monotherapy treatments induce a cytostatic response. Significant anti-tumour activity was evident in Toledo and Farage models when the two inhibitors were administered concurrently despite limited or no effect on the growth of DLBCL xenografts as monotherapies. CONCLUSIONS: This is the first study to examine a combination of two distinct approaches to targeting tumour metabolism in DLBCL xenografts. Whilst nanomolar concentrations of either AZD3965 or IACS-010759 monotherapy demonstrate anti-proliferative activity against DLBCL cell lines in vitro, appreciable clinical activity in DLBCL patients may only be realised through their combined use.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Symporters , Animals , Apoptosis , Cell Line, Tumor , Glycolysis , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Monocarboxylic Acid Transporters , Oxidative Phosphorylation , Symporters/metabolism
10.
BMC Med ; 20(1): 351, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36258205

ABSTRACT

BACKGROUND: Epidemiological studies of associations between metabolites and cancer risk have typically focused on specific cancer types separately. Here, we designed a multivariate pan-cancer analysis to identify metabolites potentially associated with multiple cancer types, while also allowing the investigation of cancer type-specific associations. METHODS: We analysed targeted metabolomics data available for 5828 matched case-control pairs from cancer-specific case-control studies on breast, colorectal, endometrial, gallbladder, kidney, localized and advanced prostate cancer, and hepatocellular carcinoma nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. From pre-diagnostic blood levels of an initial set of 117 metabolites, 33 cluster representatives of strongly correlated metabolites and 17 single metabolites were derived by hierarchical clustering. The mutually adjusted associations of the resulting 50 metabolites with cancer risk were examined in penalized conditional logistic regression models adjusted for body mass index, using the data-shared lasso penalty. RESULTS: Out of the 50 studied metabolites, (i) six were inversely associated with the risk of most cancer types: glutamine, butyrylcarnitine, lysophosphatidylcholine a C18:2, and three clusters of phosphatidylcholines (PCs); (ii) three were positively associated with most cancer types: proline, decanoylcarnitine, and one cluster of PCs; and (iii) 10 were specifically associated with particular cancer types, including histidine that was inversely associated with colorectal cancer risk and one cluster of sphingomyelins that was inversely associated with risk of hepatocellular carcinoma and positively with endometrial cancer risk. CONCLUSIONS: These results could provide novel insights for the identification of pathways for cancer development, in particular those shared across different cancer types.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Prospective Studies , Sphingomyelins , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/epidemiology , Lysophosphatidylcholines , Glutamine , Histidine , Risk Factors , Case-Control Studies , Phosphatidylcholines , Proline
11.
BMC Med ; 19(1): 166, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34289836

ABSTRACT

BACKGROUND: Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of stability and variability of omics profiles in healthy individuals, especially during childhood. METHODS: We aimed to estimate intra-, inter-individual and cohort variability of multi-omics profiles (blood DNA methylation, gene expression, miRNA, proteins and serum and urine metabolites) measured 6 months apart in 156 healthy children from five European countries. We further performed a multi-omics network analysis to establish clusters of co-varying omics features and assessed the contribution of key variables (including biological traits and sample collection parameters) to omics variability. RESULTS: All omics displayed a large range of intra- and inter-individual variability depending on each omics feature, although all presented a highest median intra-individual variability. DNA methylation was the most stable profile (median 37.6% inter-individual variability) while gene expression was the least stable (6.6%). Among the least stable features, we identified 1% cross-omics co-variation between CpGs and metabolites (e.g. glucose and CpGs related to obesity and type 2 diabetes). Explanatory variables, including age and body mass index (BMI), explained up to 9% of serum metabolite variability. CONCLUSIONS: Methylation and targeted serum metabolomics are the most reliable omics to implement in single time-point measurements in large cross-sectional studies. In the case of metabolomics, sample collection and individual traits (e.g. BMI) are important parameters to control for improved comparability, at the study design or analysis stage. This study will be valuable for the design and interpretation of epidemiological studies that aim to link omics signatures to disease, environmental exposures, or both.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Child , Cohort Studies , Cross-Sectional Studies , DNA Methylation , Humans
12.
BMC Med ; 19(1): 101, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33926456

ABSTRACT

BACKGROUND: The mechanisms underlying the obesity-cancer relationship are incompletely understood. This study aimed to characterise metabolic signatures of greater body size and to investigate their association with two obesity-related malignancies, endometrial and colorectal cancers, and with weight loss within the context of an intervention study. METHODS: Targeted mass spectrometry metabolomics data from 4326 participants enrolled in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and 17 individuals from a single-arm pilot weight loss intervention (Intercept) were used in this analysis. Metabolic signatures of body size were first determined in discovery (N = 3029) and replication (N = 1297) sets among EPIC participants by testing the associations between 129 metabolites and body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) using linear regression models followed by partial least squares analyses. Conditional logistic regression models assessed the associations between the metabolic signatures with endometrial (N = 635 cases and 648 controls) and colorectal (N = 423 cases and 423 controls) cancer risk using nested case-control studies in EPIC. Pearson correlation between changes in the metabolic signatures and weight loss was tested among Intercept participants. RESULTS: After adjustment for multiple comparisons, greater BMI, WC, and WHR were associated with higher levels of valine, isoleucine, glutamate, PC aa C38:3, and PC aa C38:4 and with lower levels of asparagine, glutamine, glycine, serine, lysoPC C17:0, lysoPC C18:1, lysoPC C18:2, PC aa C42:0, PC ae C34:3, PC ae C40:5, and PC ae C42:5. The metabolic signature of BMI (OR1-sd 1.50, 95% CI 1.30-1.74), WC (OR1-sd 1.46, 95% CI 1.27-1.69), and WHR (OR1-sd 1.54, 95% CI 1.33-1.79) were each associated with endometrial cancer risk. Risk of colorectal cancer was positively associated with the metabolic signature of WHR (OR1-sd: 1.26, 95% CI 1.07-1.49). In the Intercept study, a positive correlation was observed between weight loss and changes in the metabolic signatures of BMI (r = 0.5, 95% CI 0.06-0.94, p = 0.03), WC (r = 0.5, 95% CI 0.05-0.94, p = 0.03), and WHR (r = 0.6, 95% CI 0.32-0.87, p = 0.01). CONCLUSIONS: Obesity is associated with a distinct metabolic signature comprising changes in levels of specific amino acids and lipids which is positively associated with both colorectal and endometrial cancer and is potentially reversible following weight loss.


Subject(s)
Colorectal Neoplasms , Endometrial Neoplasms , Body Mass Index , Body Size , Colorectal Neoplasms/epidemiology , Endometrial Neoplasms/epidemiology , Female , Humans , Logistic Models , Prospective Studies , Risk Factors , Waist Circumference
13.
Hepatology ; 72(5): 1758-1770, 2020 11.
Article in English | MEDLINE | ID: mdl-32738061

ABSTRACT

BACKGROUND AND AIMS: Per- and polyfluoroalkyl substances (PFAS) are widespread and persistent pollutants that have been shown to have hepatotoxic effects in animal models. However, human evidence is scarce. We evaluated how prenatal exposure to PFAS associates with established serum biomarkers of liver injury and alterations in serum metabolome in children. APPROACH AND RESULTS: We used data from 1,105 mothers and their children (median age, 8.2 years; interquartile range, 6.6-9.1) from the European Human Early-Life Exposome cohort (consisting of six existing population-based birth cohorts in France, Greece, Lithuania, Norway, Spain, and the United Kingdom). We measured concentrations of perfluorooctane sulfonate, perfluorooctanoate, perfluorononanoate, perfluorohexane sulfonate, and perfluoroundecanoate in maternal blood. We assessed concentrations of alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyltransferase in child serum. Using Bayesian kernel machine regression, we found that higher exposure to PFAS during pregnancy was associated with higher liver enzyme levels in children. We also measured child serum metabolomics through a targeted assay and found significant perturbations in amino acid and glycerophospholipid metabolism associated with prenatal PFAS. A latent variable analysis identified a profile of children at high risk of liver injury (odds ratio, 1.56; 95% confidence interval, 1.21-1.92) that was characterized by high prenatal exposure to PFAS and increased serum levels of branched-chain amino acids (valine, leucine, and isoleucine), aromatic amino acids (tryptophan and phenylalanine), and glycerophospholipids (phosphatidylcholine [PC] aa C36:1 and Lyso-PC a C18:1). CONCLUSIONS: Developmental exposure to PFAS can contribute to pediatric liver injury.


Subject(s)
Endocrine Disruptors/adverse effects , Environmental Pollutants/adverse effects , Fluorocarbons/adverse effects , Non-alcoholic Fatty Liver Disease/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Adult , Amino Acids/blood , Amino Acids/metabolism , Child , Disease Susceptibility/etiology , Europe/epidemiology , Female , Glycerophospholipids/blood , Glycerophospholipids/metabolism , Humans , Liver Function Tests , Longitudinal Studies , Maternal Age , Maternal Exposure/adverse effects , Metabolomics , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/metabolism , Prevalence , Prospective Studies
14.
Metabolomics ; 17(12): 104, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34822010

ABSTRACT

INTRODUCTION: KRAS was one of the earliest human oncogenes to be described and is one of the most commonly mutated genes in different human cancers, including colorectal cancer. Despite KRAS mutants being known driver mutations, KRAS has proved difficult to target therapeutically, necessitating a comprehensive understanding of the molecular mechanisms underlying KRAS-driven cellular transformation. OBJECTIVES: To investigate the metabolic signatures associated with single copy mutant KRAS in isogenic human colorectal cancer cells and to determine what metabolic pathways are affected. METHODS: Using NMR-based metabonomics, we compared wildtype (WT)-KRAS and mutant KRAS effects on cancer cell metabolism using metabolic profiling of the parental KRAS G13D/+ HCT116 cell line and its isogenic, derivative cell lines KRAS +/- and KRAS G13D/-. RESULTS: Mutation in the KRAS oncogene leads to a general metabolic remodelling to sustain growth and counter stress, including alterations in the metabolism of amino acids and enhanced glutathione biosynthesis. Additionally, we show that KRASG13D/+ and KRASG13D/- cells have a distinct metabolic profile characterized by dysregulation of TCA cycle, up-regulation of glycolysis and glutathione metabolism pathway as well as increased glutamine uptake and acetate utilization. CONCLUSIONS: Our study showed the effect of a single point mutation in one KRAS allele and KRAS allele loss in an isogenic genetic background, hence avoiding confounding genetic factors. Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Alleles , Cell Line , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Metabolomics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
15.
Gynecol Oncol ; 162(2): 475-481, 2021 08.
Article in English | MEDLINE | ID: mdl-34099314

ABSTRACT

BACKGROUND: Endometrial cancer is strongly associated with obesity and dysregulation of metabolic factors such as estrogen and insulin signaling are causal risk factors for this malignancy. To identify additional novel metabolic pathways associated with endometrial cancer we performed metabolomic analyses on pre-diagnostic plasma samples from 853 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS: A total of 129 metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexoses, and sphingolipids) were measured by liquid chromatography-mass spectrometry. Conditional logistic regression estimated the associations of metabolites with endometrial cancer risk. An analysis focusing on clusters of metabolites using the bootstrap lasso method was also employed. RESULTS: After adjustment for body mass index, sphingomyelin [SM] C18:0 was positively (OR1SD: 1.18, 95% CI: 1.05-1.33), and glycine, serine, and free carnitine (C0) were inversely (OR1SD: 0.89, 95% CI: 0.80-0.99; OR1SD: 0.89, 95% CI: 0.79-1.00 and OR1SD: 0.91, 95% CI: 0.81-1.00, respectively) associated with endometrial cancer risk. Serine, C0 and two sphingomyelins were selected by the lasso method in >90% of the bootstrap samples. The ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI: 1.02-1.28) and that of short chain to free acylcarnitines (OR1SD: 1.12, 95% CI: 1.00-1.25) were positively associated with endometrial cancer risk. Further adjustment for C-peptide or other endometrial cancer risk factors only minimally altered the results. CONCLUSION: These findings suggest that variation in levels of glycine, serine, SM C18:0 and free carnitine may represent specific pathways linked to endometrial cancer development. If causal, these pathways may offer novel targets for endometrial cancer prevention.


Subject(s)
Biomarkers, Tumor/blood , Endometrial Neoplasms/diagnosis , Aged , Biomarkers, Tumor/metabolism , Body Mass Index , Carnitine/blood , Carnitine/metabolism , Case-Control Studies , Endometrial Neoplasms/blood , Endometrial Neoplasms/epidemiology , Endometrial Neoplasms/metabolism , Female , Glycine/blood , Glycine/metabolism , Humans , Metabolomics , Middle Aged , Prospective Studies , Risk Factors , Serine/blood , Serine/metabolism , Sphingomyelins/blood , Sphingomyelins/metabolism
16.
Br J Cancer ; 122(9): 1298-1308, 2020 04.
Article in English | MEDLINE | ID: mdl-32152504

ABSTRACT

BACKGROUND: Akt signalling regulates glycolysis and drives the Warburg effect in cancer, thus decreased glucose utilisation is a pharmacodynamic marker of Akt inhibition. However, cancer cells can utilise alternative nutrients to glucose for energy such as lactate, which is often elevated in tumours together with increased acidity. We therefore hypothesised that lactic acidosis may confer resistance to Akt inhibition. METHODS: The effect of the pan-Akt inhibitor uprosertib (GSK2141795), on HCT116 and LS174T colon cancer cells was evaluated in the presence and absence of lactic acid in vitro. Expression of downstream Akt signalling proteins was determined using a phosphokinase array and immunoblotting. Metabolism was assessed using 1H nuclear magnetic resonance spectroscopy, stable isotope labelling and gas chromatography-mass spectrometry. RESULTS: Lactic acid-induced resistance to uprosertib was characterised by increased cell survival and reduced apoptosis. Uprosertib treatment reduced Akt signalling and glucose uptake irrespective of lactic acid supplementation. However, incorporation of lactate carbon and enhanced respiration was maintained in the presence of uprosertib and lactic acid. Inhibiting lactate transport or oxidative phosphorylation was sufficient to potentiate apoptosis in the presence of uprosertib. CONCLUSIONS: Lactic acidosis confers resistance to uprosertib, which can be reversed by inhibiting lactate transport or oxidative metabolism.


Subject(s)
Acidosis, Lactic/drug therapy , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Oncogene Protein v-akt/genetics , Acidosis, Lactic/genetics , Acidosis, Lactic/metabolism , Acidosis, Lactic/pathology , Angiogenesis Inhibitors/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Diamines/pharmacology , Glucose/metabolism , Glycolysis/drug effects , HCT116 Cells , Humans , Lactic Acid/pharmacology , Oncogene Protein v-akt/antagonists & inhibitors , Oxidative Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects
17.
Br J Cancer ; 122(8): 1272, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32203218

ABSTRACT

Since the publication of this paper the authors noticed an error in the listed authors, where Alexandros Siskos was listed as Alexandros Sitkos. This has now been corrected.

18.
Br J Cancer ; 122(8): 1141-1145, 2020 04.
Article in English | MEDLINE | ID: mdl-32076124

ABSTRACT

A 47-year-old man with metastatic melanoma presented with refractory hyperlactaemic acidosis following the first dose of the mono-carboxylase transporter 1 inhibitor AZD3965 within a "first time in man" clinical trial. The mechanism of the agent and the temporal relationship suggested that this event was potentially drug related and recruitment was suspended. However, urinary metabolomics showed extensive abnormalities even prior to drug administration, leading to investigations for an underlying metabolic disorder. The lack of clinical symptoms from the elevated lactate and low blood glucose suggested a diagnosis of "hyper-Warburgism", where the high tumour burden was associated with extensive glucose uptake and lactate efflux from malignant cells, and the subsequent impact on blood biochemistry. This was supported by an FDG-PET scan showing extensive glucose uptake in numerous metastases and lack of uptake in the brain. A review of the literature showed 16 case reports of "hyper-Warburgism" in non-haematological malignancies, none of them with melanoma, with most associated with a poor outcome. The patient was treated symptomatically, but died 2 months later. The development of AZD3965 continues with the exclusion of patients with elevated plasma lactate at screening added to the protocol as a safety measure.Trial identification number ClinicalTrials.Gov. NCT01791595.


Subject(s)
Acidosis, Lactic/chemically induced , Hyperlactatemia/chemically induced , Melanoma/drug therapy , Monocarboxylic Acid Transporters/antagonists & inhibitors , Pyrimidinones/adverse effects , Symporters/antagonists & inhibitors , Thiophenes/adverse effects , Humans , Male , Melanoma/diagnostic imaging , Melanoma/secondary , Middle Aged , Positron-Emission Tomography
19.
BMC Med ; 18(1): 243, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32811491

ABSTRACT

BACKGROUND: The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. METHODS: We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. RESULTS: Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. CONCLUSION: In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis.


Subject(s)
Biomarkers/blood , DNA Methylation/genetics , Prenatal Exposure Delayed Effects/chemically induced , Tobacco Smoke Pollution/adverse effects , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy
20.
Metabolomics ; 16(4): 51, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300895

ABSTRACT

INTRODUCTION: Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) mutations occur in approximately one-third of colorectal (CRC) tumours and have been associated with poor prognosis and resistance to some therapeutics. In addition to the well-documented pro-tumorigenic role of mutant Ras alleles, there is some evidence suggesting that not all KRAS mutations are equal and the position and type of amino acid substitutions regulate biochemical activity and transforming capacity of KRAS mutations. OBJECTIVES: To investigate the metabolic signatures associated with different KRAS mutations in codons 12, 13, 61 and 146 and to determine what metabolic pathways are affected by different KRAS mutations. METHODS: We applied an NMR-based metabonomics approach to compare the metabolic profiles of the intracellular extracts and the extracellular media from isogenic human SW48 CRC cell lines with different KRAS mutations in codons 12 (G12D, G12A, G12C, G12S, G12R, G12V), 13 (G13D), 61 (Q61H) and 146 (A146T) with their wild-type counterpart. We used false discovery rate (FDR)-corrected analysis of variance (ANOVA) to determine metabolites that were statistically significantly different in concentration between the different mutants. RESULTS: CRC cells carrying distinct KRAS mutations exhibited differential metabolic remodelling, including differences in glycolysis, glutamine utilization and in amino acid, nucleotide and hexosamine metabolism. CONCLUSIONS: Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS.


Subject(s)
Colorectal Neoplasms/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Metabolomics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL