Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
New Phytol ; 221(4): 1878-1889, 2019 03.
Article in English | MEDLINE | ID: mdl-30289555

ABSTRACT

Soil adjacent to roots has distinct structural and physical properties from bulk soil, affecting water and solute acquisition by plants. Detailed knowledge on how root activity and traits such as root hairs affect the three-dimensional pore structure at a fine scale is scarce and often contradictory. Roots of hairless barley (Hordeum vulgare L. cv Optic) mutant (NRH) and its wildtype (WT) parent were grown in tubes of sieved (<250 µm) sandy loam soil under two different water regimes. The tubes were scanned by synchrotron-based X-ray computed tomography to visualise pore structure at the soil-root interface. Pore volume fraction and pore size distribution were analysed vs distance within 1 mm of the root surface. Less dense packing of particles at the root surface was hypothesised to cause the observed increased pore volume fraction immediately next to the epidermis. The pore size distribution was narrower due to a decreased fraction of larger pores. There were no statistically significant differences in pore structure between genotypes or moisture conditions. A model is proposed that describes the variation in porosity near roots taking into account soil compaction and the surface effect at the root surface.


Subject(s)
Hordeum/microbiology , Plant Roots/microbiology , Rhizosphere , Soil/chemistry , Hordeum/genetics , Imaging, Three-Dimensional , Mutation , Plant Roots/genetics , Porosity , Synchrotrons , Tomography, X-Ray Computed , Water/analysis
2.
Plant Cell Environ ; 42(12): 3197-3207, 2019 12.
Article in English | MEDLINE | ID: mdl-31378945

ABSTRACT

The growth of rice in submerged soils depends on its ability to form continuous gas channels-aerenchyma-through which oxygen (O2 ) diffuses from the shoots to aerate the roots. Less well understood is the extent to which aerenchyma permits venting of respiratory carbon dioxide (CO2 ) in the opposite direction. Large, potentially toxic concentrations of dissolved CO2 develop in submerged rice soils. We show using X-ray computed tomography and image-based mathematical modelling that CO2 venting through rice roots is far greater than thought hitherto. We found rates of venting equivalent to a third of the daily CO2 fixation in photosynthesis. Without this venting through the roots, the concentrations of CO2 and associated bicarbonate (HCO3- ) in root cells would have been well above levels known to be toxic to roots. Removal of CO2 and hence carbonic acid (H2 CO3 ) from the soil was sufficient to increase the pH in the rhizosphere close to the roots by 0.7 units, which is sufficient to solubilize or immobilize various nutrients and toxicants. A sensitivity analysis of the model showed that such changes are expected for a wide range of plant and soil conditions.


Subject(s)
Carbon Dioxide/metabolism , Oryza/metabolism , Plant Roots/metabolism , Soil/chemistry , Models, Biological
3.
New Phytol ; 216(1): 124-135, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28758681

ABSTRACT

In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 µm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm-3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 µm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling.


Subject(s)
Hordeum/physiology , Imaging, Three-Dimensional , Plant Roots/physiology , Rhizosphere , Soil/chemistry , Synchrotrons , Computer Simulation , Porosity
4.
Microsc Microanal ; 23(3): 538-552, 2017 06.
Article in English | MEDLINE | ID: mdl-28320487

ABSTRACT

The use of in vivo X-ray microcomputed tomography (µCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using µCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via µCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray µCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.

5.
J Exp Bot ; 67(4): 1059-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26739861

ABSTRACT

In this study, we developed a spatially explicit model for nutrient uptake by root hairs based on X-ray computed tomography images of the rhizosphere soil structure. This work extends our previous work to larger domains and hence is valid for longer times. Unlike the model used previously, which considered only a small region of soil about the root, we considered an effectively infinite volume of bulk soil about the rhizosphere. We asked the question: At what distance away from root surfaces do the specific structural features of root-hair and soil aggregate morphology not matter because average properties start dominating the nutrient transport? The resulting model was used to capture bulk and rhizosphere soil properties by considering representative volumes of soil far from the root and adjacent to the root, respectively. By increasing the size of the volumes that we considered, the diffusive impedance of the bulk soil and root uptake were seen to converge. We did this for two different values of water content. We found that the size of region for which the nutrient uptake properties converged to a fixed value was dependent on the water saturation. In the fully saturated case, the region of soil we needed to consider was only of radius 1.1mm for poorly soil-mobile species such as phosphate. However, in the case of a partially saturated medium (relative saturation 0.3), we found that a radius of 1.4mm was necessary. This suggests that, in addition to the geometrical properties of the rhizosphere, there is an additional effect of soil moisture properties, which extends further from the root and may relate to other chemical changes in the rhizosphere. The latter were not explicitly included in our model.


Subject(s)
Imaging, Three-Dimensional , Oryza/physiology , Plant Roots/physiology , Rhizosphere , Models, Biological , Tomography, X-Ray Computed
6.
New Phytol ; 198(4): 1023-1029, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23600607

ABSTRACT

· Root hairs are known to be highly important for uptake of sparingly soluble nutrients, particularly in nutrient deficient soils. Development of increasingly sophisticated mathematical models has allowed uptake characteristics to be quantified. However, modelling has been constrained by a lack of methods for imaging live root hairs growing in real soils. · We developed a plant growth protocol and used Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM) to uncover the three-dimensional (3D) interactions of root hairs in real soil. We developed a model of phosphate uptake by root hairs based directly on the geometry of hairs and associated soil pores as revealed by imaging. · Previous modelling studies found that root hairs dominate phosphate uptake. By contrast, our study suggests that hairs and roots contribute equally. We show that uptake by hairs is more localized than by roots and strongly dependent on root hair and aggregate orientation. · The ability to image hair-soil interactions enables a step change in modelling approaches, allowing a more realistic treatment of processes at the scale of individual root hairs in soil pores.


Subject(s)
Imaging, Three-Dimensional/methods , Phosphates/metabolism , Plant Roots/anatomy & histology , Plant Roots/growth & development , Soil , Synchrotrons , Triticum/anatomy & histology , Computer Simulation , Models, Biological , Rhizosphere
7.
R Soc Open Sci ; 6(10): 190769, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31824700

ABSTRACT

This investigation establishes a system of gold nanoparticles that show good colloidal stability as an X-ray computed tomography (XCT) contrast agent under soil conditions. Gold nanoparticles offer numerous beneficial traits for experiments in biology including: comparatively minimal phytotoxicity, X-ray attenuation of the material and the capacity for functionalization. However, soil salinity, acidity and surface charges can induce aggregation and destabilize gold nanoparticles, hence in biomedical applications polymer coatings are commonly applied to gold nanoparticles to enhance stability in the in vivo environment. Here we first demonstrate non-coated nanoparticles aggregate in soil-water solutions. We then show coating with a polyethylene glycol (PEG) layer prevents this aggregation. To demonstrate this, PEG-coated nanoparticles were drawn through flow columns containing soil and were shown to be stable; this is in contrast with control experiments using silica and alumina-packed columns. We further determined that a suspension of coated gold nanoparticles which fully saturated soil maintained stability over at least 5 days. Finally, we used time resolved XCT imaging and image based models to approximate nanoparticle diffusion as similar to that of other typical plant nutrients diffusing in water. Together, these results establish the PEGylated gold nanoparticles as potential contrast agents for XCT imaging in soil.

8.
PLoS One ; 10(6): e0126230, 2015.
Article in English | MEDLINE | ID: mdl-26030902

ABSTRACT

BACKGROUND: Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. METHODS: FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. RESULTS: The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15 mm x 7 mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. CONCLUSION: We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis.


Subject(s)
Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , X-Ray Microtomography/methods , Formaldehyde , Humans , Lung/blood supply , Paraffin Embedding , Tissue Fixation
SELECTION OF CITATIONS
SEARCH DETAIL