ABSTRACT
Hemolytic reactions can cause serious complications after administration of Intravenous Immunoglobulin (IVIG), due to passive transfer of anti-A and anti-B IgG antibodies (isoagglutinins). A maximum allowable amount of isoagglutinins is established in the US and EU for licensed IVIG, as measured by a specified direct hemagglutination test (DHAT). Despite this limit, reports of hemolysis have increased over time, raising the question of how well the DHAT predicts clinically significant hemolysis. This study was undertaken to develop a microplate-based complement-dependent hemolysis assay (CDHA) that reproducibly measures functional hemolytic activity of IVIG, for assessment of IVIG products. An IVIG working reference reagent (NIBSC 14/160) was qualified as an assay control and for quantitation purposes. Hemolytic activities of 36 IVIG product lots encompassing seven brands and including 6 clinically hemolytic lots were measured. Hemolytic activity varied among IVIG product brands, and to a lesser extent, from lot-to-lot for individual brands. Correlation between the CDHA and DHAT was not robust which may reflect imprecision of the DHAT method or additional variables that influence complement-dependent hemolysis after opsonization. In conclusion, the CDHA provides a simple, specific, and sensitive tool for IVIG product characterization and investigation of hemolytic events by manufacturers, researchers, and regulatory authorities.
Subject(s)
Hemolysis , Immunoglobulins, Intravenous , Hemagglutinins , Humans , Immunoglobulin GABSTRACT
BACKGROUND: In a 2012 Phase II clinical trial, 300 Bangladeshi children aged 24 to 59 months with no prior influenza vaccine exposure were randomized to receive a single intranasally-administered dose of either trivalent, Russian-backbone, live, attenuated influenza vaccine (LAIV) or placebo. Protocol-defined analyses, presented in the companion manuscript, demonstrate decreased viral detection and immunogenicity for A/H1N1pdm09, relative to the A/H3N2 and B strains. This post hoc analysis of the trial data aims to investigate the LAIV strain differences by testing the hypothesis that preexisting humoral and mucosal immunity may influence viral recovery and immune responses after LAIV receipt. METHODS: We used logistic regressions to evaluate the relations between markers of preexisting immunity (ie, hemagglutination inhibition [HAI], microneutralization, and immunoglobulin G and immunoglobulin A (both serum and mucosal antibodies) and LAIV viral recovery in the week post-vaccination. We then tested for potential effect modification by baseline HAI titers (ie, <10 versus ≥10) and week 1 viral recovery on the LAIV-induced serum and mucosal immune responses, measured between days 0 and 21 post-vaccination. RESULTS: Higher levels of preexisting immunity to influenza A/H3N2 and B were strongly associated with strain-specific prevention of viral shedding upon LAIV receipt. While evidence of LAIV immunogenicity was observed for all 3 strains, the magnitudes of immune responses were most pronounced in children with no evidence of preexisting HAI and in those with detectable virus. CONCLUSIONS: The results provide evidence for a bidirectional association between viral replication and immunity, and underscore the importance of accounting for preexisting immunity when evaluating virologic and immunologic responses to LAIVs. CLINICAL TRIALS REGISTRATION: NCT01625689.
Subject(s)
Antibodies, Viral/blood , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Administration, Intranasal , Antibodies, Viral/immunology , Bangladesh , Child, Preschool , Cross-Sectional Studies , Female , Hemagglutination Inhibition Tests , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology , Male , Vaccination , Vaccines, Attenuated/immunology , Virus SheddingABSTRACT
BACKGROUND: Influenza immune globulin, manufactured from plasma of convalescent or vaccinated donors has been proposed as a potential therapy for severe influenza. In 2009, a program was initiated to collect plasma from donors who self-identified as having had H1N1 influenza or having received the H1N1 pandemic vaccine. The goal of this study was to determine the efficiency of donor screening by self-identification without antibody testing, and to evaluate demographic predictors of high-titer donations. STUDY DESIGN AND METHODS: Plasma samples from self-identified or control donors were randomly selected to evaluate hemagglutination inhibition (HAI) antibody responses. HAI titers were correlated with donor age, gender, location, and influenza exposure history. RESULTS: Both self-identified vaccinated and convalescent donor groups had higher geometric mean titers (GMTs) against A/California/07/2009 (H1N1) virus compared to the control donors (39.9, 24, and 8.5, respectively). The proportion of samples with titers ≥64 in vaccinated, convalescent, and control donors were 54%, 37%, and 10%, respectively. Donations with titers ≤16 were predominant in control donors (80%) and substantial in convalescent (47%) and vaccinated (40%) donors. Titers did not correlate with donor age, gender, or geographical location. GMTs for vaccinated donors were significantly higher than for convalescent donors and in both groups significantly higher than in the control. CONCLUSION: Targeted collection of plasma containing high levels of anti-influenza antibodies from self-identified donors was effective, but could be further improved by reducing the number of low-titer donations. More selective donor screening and/or testing for influenza antibodies could increase the potency of an influenza antibody-rich immune globulin (FLUIGIV).
Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Self Disclosure , Tissue Donors , Adult , Case-Control Studies , Female , Humans , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Male , Middle Aged , PandemicsABSTRACT
BACKGROUND: Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. METHODS: Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). RESULTS: Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)--numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. CONCLUSIONS: LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. CLINICAL TRIALS REGISTRATION: NCT01246999.
Subject(s)
Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Child , Child, Preschool , Female , Hemagglutination Inhibition Tests/methods , Humans , Immunoglobulin A/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Male , Viral Vaccines/immunologyABSTRACT
We applied Surface Plasmon Resonance (SPR) technology to develop a method for potency screening and quantification of anti-influenza antibodies in minimally processed human plasma samples and intravenous immunoglobulin (IGIV) products. We found that specific antibodies in human plasma or IGIV capable of inhibiting binding of influenza hemagglutinin to receptor-analogous glycans do so in concentration-dependent manner. We ranked the inhibitory activity of plasma samples from multiple donors and found a good correlation (r = 0.87) of SPR assay measurements and conventional hemagglutination inhibition (HAI) assay results. This method was also applied to screen for specific anti-influenza antibodies in IGIV lots manufactured pre- and post-2009 H1N1 pandemic. The SPR method was also applied to study binding inhibition of the intact A/California/04/2009 H1N1 and B/Victoria/504/2000 influenza viruses to α2,6 or α2,3-linked synthetic glycans. In contrast to recombinant H1 hemagglutinin, which was found to interact primarily with α2,6-linked terminal sialic acids, intact H1N1 or influenza B virus recognized both types of receptor analogs with different observed dissociation rates and the inhibitory activity of plasma antibodies was dependent on the type of sialic acid link. The SPR method can provide a high-throughput, time-saving and semi-automated alternative to conventional assays such as HAI or microneutralization in situations where screening of large numbers of plasma donations to identify high titer units is needed to product highly potent immunoglobulins.
ABSTRACT
The recent global COVID-19 pandemic caused by SARS-CoV-2 lasted for over three years. A key measure in combatting this pandemic involved the measurement of the monoclonal antibody (mAb)-mediated inhibition of binding between the spike receptor-binding domain (RBD) and hACE2 receptor. Potency assessments of therapeutic anti-SARS-CoV-2 mAbs typically include binding or cell-based neutralization assays. We assessed the inhibitory activity of five anti-SARS-CoV-2 mAbs using ELISA, surface plasmon resonance (SPR), and four cell-based neutralization assays using different pseudovirus particles and 293T or A549 cells expressing hACE2 with or without TMPRSS2. We assessed the interchangeability between cell-based and binding assays by applying the Bland-Altman method under certain assumptions. Our data demonstrated that the IC50 [nM] values determined by eight neutralization assays are independent of the cell line, presence of TMPRSS2 enzyme on the cell surface, and pseudovirus backbone used. Moreover, the Bland-Altman analysis showed that the IC50 [nM] and KD [nM] values determined by neutralization/ELISA or by SPR are equivalent and that the anti-spike mAb activity can be attributed to one variable directly related to its tertiary conformational structure conformation, rate dissociation constant Koff. This parameter is independent from the concentrations of the components of the mAb:RBD:hACE2 complexes and can be used for a comparison between the activities of the different mAbs.
Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , A549 Cells , Antibodies, Monoclonal , Antibodies, ViralABSTRACT
The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to alpha2,3 together with decreasing binding to alpha2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals.
Subject(s)
Disease Models, Animal , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/virology , Adaptation, Physiological , Animals , Chickens , Female , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/growth & development , Influenza, Human/mortality , Lung/virology , Male , Mice , Mice, Inbred BALB C , Viral Proteins/genetics , VirulenceABSTRACT
Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 mug of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.
Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Adjuvants, Immunologic/administration & dosage , Animals , Animals, Domestic , Antibodies, Viral/blood , Asia , Cloaca/virology , Ducks , Hemagglutination Inhibition Tests , Oils/administration & dosage , Survival Analysis , Trachea/virology , Vaccines, Inactivated/immunology , Virus SheddingABSTRACT
Despite the extensive use of poultry vaccines to control the spread of H5N1 influenza in poultry, H5N1 outbreaks continue to occur in domestic birds. Our objective was to determine the duration of the neutralizing antibody response under field conditions after vaccination with a laboratory-tested inactivated reverse genetics-derived H5N3 vaccine. H5N3 hemagglutination inhibition (HI) and virus neutralization (VN) antibodies were observed 40 weeks after vaccination of chickens with two doses and vaccination of ducks with one dose. Cross-clade antibodies to an H5N1 virus (A/chicken/Laos/A0464/07) antigenically distinct from the vaccine strain were detected in ducks after a single vaccination and were sustained for 28 weeks (for 40 weeks when a boost vaccination was given). Our results indicate that this inactivated H5N3 vaccine can produce long-lasting antibodies to homologous and heterologous viruses under field conditions.
Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Animals , Antibodies, Viral/blood , Chickens , Cross Reactions , Ducks , Hemagglutination Inhibition Tests , Laos , Neutralization Tests , Vaccines, Inactivated/immunologyABSTRACT
Type I interferons (IFNs) signal by forming a high affinity IFN-IFNAR2 dimer, which subsequently recruits IFNAR1 to form a ternary complex that initiates JAK/STAT signaling. Among the 12 IFNα subtypes, IFNα1 has a uniquely low affinity for IFNAR2 (<100 × of the other IFNα subtypes) and commensurately weak antiviral activity, suggesting an undefined function distinct from suppression of viral infections. Also unique in IFNα1 is substitution of a serine for phenylalanine at position 27, a contact point that stabilizes the IFNα:IFNAR2 hydrophobic interface. To determine whether IFNα1-S27 contributes to the low affinity for IFNAR2, we created an IFNα1 mutein, IFNα1-S27F, and compared it to wild-type IFNα1 and IFNα2. Substitution of phenylalanine for serine increased affinity for IFNAR2 â¼4-fold and commensurately enhanced activation of STAT1, STAT3, and STAT5, transcription of a subset of interferon stimulated genes, and restriction of vesicular stomatitis virus infection in vitro. Structural modeling suggests that S27 of IFNα1 disrupts the IFNα:IFNAR2 hydrophobic interface that is otherwise stabilized by F27 and that replacing S27 with phenylalanine partially restores the hydrophobic surface. Disruption of the hydrophobic IFNα:IFNAR2 interface by the unique S27 of IFN α1 contributes to its low affinity and weak antiviral activity.
Subject(s)
Interferon-alpha/immunology , Interferon-alpha/metabolism , Receptor, Interferon alpha-beta/metabolism , Serine , Vesiculovirus/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Interferon-alpha/chemistry , Microbial Sensitivity Tests , Models, Molecular , Serine/genetics , Serine/metabolism , Tumor Cells, CulturedABSTRACT
Various species of aquatic or wetlands birds can be the natural reservoir of avian influenza A viruses of all hemagglutinin (HA) subtypes. Shedding of the virus into water leads to transmission between waterfowl and is a major threat for epidemics in poultry and pandemics in humans. Concentrations of the influenza virus in natural water reservoirs are often too low to be detected by most methods. The procedure was designed to detect and isolate low concentrations of the influenza virus in large volumes of water without the need for costly installations and reagents. The virus was adsorbed onto formalin-fixed erythrocytes and subsequently isolated in chicken embryos. Sensitivity of the method was determined using a reverse-genetic H5N1 virus. A concentration as low as 0.03 of the 50% egg infection dose per milliliter (EID50/ml) of the initial volume of water was effectively detected. The probability of detection was approximately 13%, which is comparable to that of detecting the influenza virus M-gene by PCR amplification. The method can be used by field workers, ecologists, ornithologists, and researchers who need a simple method to isolate H5N1 influenza virus from natural reservoirs. The detection and isolation of virus in embryonated chicken eggs may help epidemiologic, genetic, and vaccine studies.
Subject(s)
Hemagglutination Tests/methods , Influenza A Virus, H5N1 Subtype/isolation & purification , Rivers/virology , Water Microbiology , Animals , Birds/virology , Chick Embryo , Hemagglutination, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza in Birds/virology , Sensitivity and SpecificityABSTRACT
We applied an in vitro selection approach using two different plant lectins that bind to α2,3- or α2,6-linked sialic acids to determine which genetic changes of the A/California/04/09 (H1N1) virus alter hemagglutinin (HA) receptor binding toward α2,3- or α2,6-linked glycans. Consecutive passages of the A/California/04/09 virus with or without lectins in human lung epithelial Calu-3 cells led to development of three HA1 amino acid substitutions, N129D, G155E, and S183P, and one mutation in the neuraminidase (NA), G201E. The S183P mutation significantly increased binding to several α2,6 SA-linked glycans, including YDS, 6'SL(N), and 6-Su-6'SLN, compared to the wild-type virus (↑3.6-fold, P < 0.05). Two other HA1 mutations, N129D and G155E, were sufficient to significantly increase binding to α2,6-linked glycans, 6'SLN and 6-Su-6'SLN, compared to S183P (↑4.1-fold, P < 0.05). These HA1 mutations also increased binding affinity for 3'SLN glycan compared to the wild-type virus as measured by Biacore surface plasmon resonance method. In addition, the HA1 N129D and HA1 G155E substitutions were identified as antigenic mutations. Furthermore, the G201E mutation in NA reduced the NA enzyme activity (↓2.3-fold). These findings demonstrate that the A/California/04/09 (H1N1) virus can acquire enhanced receptor affinity for both α2,3- and α2,6-linked sialic receptors under lectin-induced selective pressure. Such changes in binding affinity are conferred by selection of beneficial HA1 mutations that affect receptor specificity, antigenicity, and/or functional compatibility with the NA protein.
Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Neuraminidase/genetics , Neuraminidase/metabolism , Plant Lectins/metabolism , Receptors, Virus/physiology , Amino Acid Substitution , Animals , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/metabolism , Cell Line , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Madin Darby Canine Kidney Cells , Neuraminidase/chemistry , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/metabolism , Protein Binding , Selection, Genetic , Surface Plasmon ResonanceABSTRACT
Interferon regulatory factors IRF-3 and IRF-7 are central to the establishment of the innate antiviral response. This study examines HSV-1 pathogenesis in IRF-3(-/-), IRF-7(-/-) and double-deleted IRF3/7(-/-) (DKO) mice. Bioluminescence imaging of infection revealed that DKO mice developed visceral infection following corneal inoculation, along with increased viral burdens in all tissues relative to single knockout mice. While all DKO mice synchronously reached endpoint criteria 5 days post infection, the IRF-7(-/-) mice survived longer, indicating that although IRF-7 is dominant, IRF-3 also plays a role in controlling disease. Higher levels of systemic pro-inflammatory cytokines were found in IRF7(-/-) and DKO mice relative to wild-type and IRF-3(-/-) mice, and IL-6 and G-CSF, indicative of sepsis, were increased in the DKO mice relative to wild-type or single-knockout mice. In addition to controlling viral replication, IRF-3 and -7 therefore play coordinating roles in modulation of inflammation during HSV infection.
Subject(s)
Herpes Simplex/immunology , Herpes Simplex/pathology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Animals , Disease Models, Animal , Luminescence , Mice , Mice, Inbred C57BL , Mice, Knockout , Sepsis/immunology , Sepsis/pathology , Survival Analysis , Time Factors , Whole Body ImagingABSTRACT
The continued evolution of H9N2 and H5N1 viruses and their spread and re-emergence across Eurasia raise concern that prior H9N2 virus infection may limit the detection of subsequent H5N1 infection in gallinaceous poultry by attenuating the severity of disease. We show that H9N2 viruses isolated from Israeli turkeys during 2000-2004 were antigenically and genetically distinguishable. These three H9N2 viruses caused no overt signs of disease in chickens. The 2004 isolate replicated and spread most efficiently, and chickens previously inoculated with this H9N2 virus showed 90%-100% survival after inoculation 1 to 35 days later with lethal H5N1 virus. Chickens that survived did not show signs of disease but did shed lethal H5N1 virus from the cloaca. The modulation of survivability was time-dependent; the effect was maximal 5 days after H9N2 inoculation. These findings suggest that co-circulation of H9N2 viruses can contribute to the spread of lethal H5N1 viruses.
Subject(s)
Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/immunology , Influenza in Birds/immunology , Influenza in Birds/virology , Poultry Diseases/immunology , Poultry Diseases/virology , Animals , Chick Embryo , Chickens , Cloaca/virology , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/pathology , Influenza in Birds/physiopathology , Israel , Phylogeny , Poultry Diseases/pathology , Poultry Diseases/physiopathology , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Survival Analysis , Turkeys , Virus SheddingABSTRACT
The rapid evolution, genetic diversity, broad host range, and increasing human infection with avian influenza A (H5N1) viruses highlight the need for an efficacious cross-clade vaccine. Using the ferret model, we compared induction of cross-reactive immunity and protective efficacy of three single-clade H5N1 vaccines and a novel multiple-clade H5N1 vaccine, with and without MF59 adjuvant. Reverse genetics (rg) was used to generate vaccine viruses containing the hemagglutinin (HA) and neuraminidase genes of wild-type H5N1 viruses. Ferrets received two doses of inactivated whole-virus vaccine separated by 3 weeks. Single-clade vaccines (7.5 microg HA per dose) included rg-A/Vietnam/1203/04 (clade 1), rg-A/Hong Kong/213/03 (clade 1), and rg-A/Japanese White Eye/Hong Kong/1038/06 (clade 2.3). The multiple-clade vaccine contained 3.75 microg HA per dose of each single-clade vaccine and of rg-A/Whooper Swan/Mongolia/244/05 (clade 2.2). Two doses of vaccine were required to substantially increase anti-HA and virus neutralizing antibody titers to H5N1 viruses. MF59 adjuvant enhanced induction of clade-specific and cross-clade serum antibody responses, reduced frequency of infection (as determined by upper respiratory tract virus shedding and seroconversion data), and eliminated disease signs. The rg-A/Hong Kong/213/03 vaccine induced the highest antibody titers to homologous and heterologous H5N1 viruses, while rg-A/Japanese White Eye/Hong Kong/1038/06 vaccine induced the lowest. The multiple-clade vaccine was broadly immunogenic against clade 1 and 2 viruses. The rg-A/Vietnam/1203/04 vaccine (the currently stockpiled H5N1 vaccine) most effectively reduced upper respiratory tract virus shedding after challenge with clade 1 and 2 viruses. Importantly, all vaccines protected against lethal challenge with A/Vietnam/1203/04 virus and provided cross-clade protection.