Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Language
Affiliation country
Publication year range
1.
Acta Cir Bras ; 27(3): 256-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22460257

ABSTRACT

PURPOSE: To determine biomechanical property of autogenous bone graft covered with hydroxyapatite in the defect of radial bone in rabbit. METHODS: Eighteen adult male New Zealand white rabbits were used which were divided into three groups (I, II, III) of six rabbits each. A segmental bone defect of 10 mm in length was created in the middle of the right radial shaft under general effective anesthesia in all rabbits and were stabilized using mini-plate with four screws. The defects In group I were left as such without filler, whereas in group II the defect were filled up with harvested 10 mm rib bone and in group III the defect were packed with rib bone covered with nano-hydroxyapatite. All rabbits in three groups were divided into two subgroups (one month and three months duration with three rabbits in each one). RESULTS: The mechanical property and the mean load for fracturing normal radial bone was recorded 388.2 ± 6 N whereas it was 72.4 ± 12.8 N for group I in 1 month duration which was recorded 182.4 ± 14.2 N for group II and 211.6 ± 10.4 N for group III at the end of 1 month. These values were 97.6 ± 10.2 N for group I and 324.6 ± 8.2 N for group II and 372.6 ± 17.4 N for group III at the end of three months after implantation. CONCLUSION: Implantation of autologous graft covered with hydroxyapatite indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.


Subject(s)
Bone Substitutes/therapeutic use , Bone Transplantation/methods , Bony Callus/physiopathology , Fracture Healing/drug effects , Hydroxyapatites/therapeutic use , Radius Fractures/physiopathology , Ribs/transplantation , Animals , Biocompatible Materials/therapeutic use , Biomechanical Phenomena , Disease Models, Animal , Male , Nanocomposites/therapeutic use , Rabbits , Radius Fractures/surgery , Random Allocation , Transplantation, Autologous
2.
Acta cir. bras ; 27(3): 256-259, Mar. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-617966

ABSTRACT

PURPOSE: To determine biomechanical property of autogenous bone graft covered with hydroxyapatite in the defect of radial bone in rabbit. METHODS: Eighteen adult male New Zealand white rabbits were used which were divided into three groups (I, II, III) of six rabbits each. A segmental bone defect of 10 mm in length was created in the middle of the right radial shaft under general effective anesthesia in all rabbits and were stabilized using mini-plate with four screws. The defects In group I were left as such without filler, whereas in group II the defect were filled up with harvested 10 mm rib bone and in group III the defect were packed with rib bone covered with nano-hydroxyapatite. All rabbits in three groups were divided into two subgroups (one month and three months duration with three rabbits in each one). RESULTS: The mechanical property and the mean load for fracturing normal radial bone was recorded 388.2±6 N whereas it was 72.4±12.8 N for group I in 1 month duration which was recorded 182.4±14.2 N for group II and 211.6±10.4 N for group III at the end of 1 month. These values were 97.6±10.2 N for group I and 324.6±8.2 N for group II and 372.6±17.4 N for group III at the end of three months after implantation. CONCLUSION: Implantation of autologous graft covered with hydroxyapatite indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.


OBJETIVO: Determinar as propriedades biomecânicas de enxerto ósseo autógeno coberto com hidroxiapatita em defeito do osso radial em coelhos. MÉTODOS: Foram utilizados 18 coelhos adultos, machos, brancos, Nova Zelândia, distribuídos em três grupos (I, II, III) de seis coelhos cada. Um defeito segmentar de 10 mm de comprimento foi criado no meio do eixo radial direito sob anestesia geral efetiva em todos os coelhos e foram fixados usando mini-placa com quatro parafusos. Os defeitos no grupo I foram deixados sem preenchimento, enquanto no grupo II o defeito foi preenchido com 10 mm de costela recoberta com nano-hidroxiapatita. Os coelhos nos três grupos foram distribuídos em dois subgrupos (Um e três meses, com três coelhos cada um). RESULTADOS: A propriedade mecânica e a média do peso para fraturar o osso radial normal foi 388,2±6 N, enquanto para o Grupo I, com um mês foi 72,4±12,8 N, para o grupo II 182,4±14,2 N e para o Grupo III 211,6±10,4 N. Após três meses de implantação, os valores foram 97,6±10,2 N para o Grupo I, 324,6±8,2 N para o Grupo II e 372,6±17,4 N para o Grupo III. CONCLUSÃO: A implantação de enxerto autólogo recoberto com hidroxiapatita indicou ter um efeito positivo na formação integral qualitativa do calo ósseo no local da fratura e precoce reorganização do calo com recuperação da força mecânica.


Subject(s)
Animals , Male , Rabbits , Bone Substitutes/therapeutic use , Bone Transplantation/methods , Bony Callus/physiopathology , Fracture Healing/drug effects , Hydroxyapatites/therapeutic use , Radius Fractures/physiopathology , Ribs/transplantation , Biomechanical Phenomena , Biocompatible Materials/therapeutic use , Disease Models, Animal , Nanocomposites/therapeutic use , Random Allocation , Radius Fractures/surgery , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL