Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Proc Natl Acad Sci U S A ; 121(8): e2306639121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346196

ABSTRACT

As a fundamental ecological aspect of most organisms, locomotor function significantly constrains morphology. At the same time, the evolution of novel locomotor abilities has produced dramatic morphological transformations, initiating some of the most significant diversifications in life history. Despite significant new fossil evidence, it remains unclear whether volant locomotion had a single or multiple origins in pennaraptoran dinosaurs and the volant abilities of individual taxa are controversial. The evolution of powered flight in modern birds involved exaptation of feathered surfaces extending off the limbs and tail yet most studies concerning flight potential in pennaraptorans do not account for the structure and morphology of the wing feathers themselves. Analysis of the number and shape of remex and rectrix feathers across a large dataset of extant birds indicates that the number of remiges and rectrices and the degree of primary vane asymmetry strongly correlate with locomotor ability revealing important functional constraints. Among these traits, phenotypic flexibility varies reflected by the different rates at which morphological changes evolve, such that some traits reflect the ancestral condition, whereas others reflect current locomotor function. While Mesozoic birds and Microraptor have remex morphologies consistent with extant volant birds, that of anchiornithines deviate significantly providing strong evidence this clade was not volant. The results of these analyses support a single origin of dinosaurian flight and indicate the early stages of feathered wing evolution are not sampled by the currently available fossil record.


Subject(s)
Biological Evolution , Dinosaurs , Animals , Phylogeny , Flight, Animal , Feathers/anatomy & histology , Locomotion , Dinosaurs/anatomy & histology , Fossils , Wings, Animal/anatomy & histology , Birds/anatomy & histology
2.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955226

ABSTRACT

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Subject(s)
Biological Evolution , Birds , Feathers , Fossils , Molting , Animals , Feathers/anatomy & histology , Fossils/anatomy & histology , Birds/physiology , Birds/anatomy & histology , Molting/physiology , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Flight, Animal , China , Wings, Animal/anatomy & histology
3.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35617136

ABSTRACT

The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.


Subject(s)
Genome, Mitochondrial , Swallows , Africa , Animals , Asia , Female , Humans , Phylogeography , Swallows/genetics
4.
J Evol Biol ; 35(2): 278-287, 2022 02.
Article in English | MEDLINE | ID: mdl-34935231

ABSTRACT

Males and females are often influenced by different selective forces, frequently resulting in diverging phenotypes, for example in colouration. Since an animal's colouration may strongly influence its fitness, causes and consequences of sexual dichromatism in birds could aid in understanding important factors affecting sexual and natural selection. Variation in plumage ornamentation may affect mate attraction or intraspecific antagonistic behaviour. In most passerines, body plumage colouration of juveniles is obtained through the process of feather moult. The number of moulted wing and tail feathers, which also influences the bird's appearance, may affect its fitness. Here, we show that body plumage colouration of male, but not female, passerines is correlated with the number of moulted wing and tail feathers in the early stage of the bird's life for both sexes. Thus, the extent of wing and tail moult in females is not modulated by the female's colouration and can prevent females from reaching their sex-specific optima. This result could be explained by high intersexual genetic correlations, which might make it impossible for the sexes to reach their own trait fitness optima. Our findings may indicate that species-specific, rather than sex-specific, internal correlations shaped bird moult strategy, an important avian life-history trait.


Subject(s)
Feathers , Passeriformes , Animals , Biological Evolution , Female , Male , Molting , Passeriformes/genetics , Wings, Animal
5.
Emerg Infect Dis ; 24(5): 879-882, 2018 05.
Article in English | MEDLINE | ID: mdl-29664386

ABSTRACT

Alkhurma hemorrhagic fever virus RNA was detected in immature Hyalomma rufipes ticks infesting northward migratory birds caught in the North Mediterranean Basin. This finding suggests a role for birds in the ecology of the Alkhurma hemorrhagic fever virus and a potential mechanism for dissemination to novel regions. Increased surveillance is warranted.


Subject(s)
Bird Diseases/parasitology , Encephalitis Viruses, Tick-Borne/isolation & purification , Ixodidae/virology , RNA, Viral/isolation & purification , Tick Infestations/veterinary , Animal Migration , Animals , Bird Diseases/epidemiology , Greece , Italy , Seasons
6.
Am Nat ; 189(2): 184-195, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28107059

ABSTRACT

Time constraints influence various ecological, life-history, and demographic properties of individuals and populations of many species throughout the annual cycle. Feather molt is a timely undertaking that is considered among the three most energy-demanding processes in the life cycle of birds. To deal with time pressure, passerines may shorten their molt duration, using three non-mutually exclusive mechanisms: (1) replacing only part of the plumage, (2) increasing the speed of molt, and (3) postponing the renewal of some or all the plumage to a later season (i.e., from the summer to the overwintering period). We used a comparative approach by measuring 12,349 individuals from 134 passerine species to explore how feather molt of juvenile and adult passerines is evolutionarily modulated under time constraints. The results indicate that breeding at northern latitudes and long-distance migration limit the time available for molt and that the consequences of time constraints were age dependent. While the duration of adult summer molt decreased, the extent, rather than the duration, of juvenile molt declined under time constraints. This study highlights the importance of considering time constraints in order to enhance the understanding of selective forces that shape life-history processes and their consequences throughout the annual routine.


Subject(s)
Molting , Songbirds , Animals , Feathers , Reproduction , Seasons
7.
Mol Phylogenet Evol ; 107: 209-220, 2017 02.
Article in English | MEDLINE | ID: mdl-27818264

ABSTRACT

With the availability of enormous quantities of genetic data it has become common to construct very accurate trees describing the evolutionary history of the species under study, as well as every single gene of these species. These trees allow us to examine the evolutionary compliance of given markers (characters). A marker compliant with the history of the species investigated, has undergone mutations along the species tree branches, such that every subtree of that tree exhibits a different state. Convex recoloring (CR) uses combinatorial representation to measure the adequacy of a taxonomic classifier to a given tree. Despite its biological origins, research on CR has been almost exclusively dedicated to mathematical properties of the problem, or variants of it with little, if any, relationship to taxonomy. In this work we return to the origins of CR. We put CR in a statistical framework and introduce and learn the notion of the statistical significance of a character. We apply this measure to two data sets - Passerine birds and prokaryotes, and four examples. These examples demonstrate various applications of CR, from evolutionary relatedness, through lateral evolution, to supertree construction. The above study was done with a new software that we provide, containing algorithmic improvement with a graphical output of a (optimally) recolored tree. AVAILABILITY: A code implementing the features and a README is available at http://research.haifa.ac.il/ssagi/software/convexrecoloring.zip.


Subject(s)
Algorithms , Biological Evolution , Animal Migration , Animals , Birds/genetics , Computer Simulation , Genetic Markers , Molting , Phylogeny , Prokaryotic Cells/metabolism
8.
Commun Biol ; 6(1): 687, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400509

ABSTRACT

Feathers are a primitive trait among pennaraptoran dinosaurs, which today are represented by crown birds (Neornithes), the only clade of dinosaurs to survive the end Cretaceous mass extinction. Feathers are central to many important functions and therefore, maintaining plumage function is of great importance for survival. Thus, molt - by which new feathers are formed to replace old ones, is an essential process. Our limited knowledge regarding molt in early pennaraptoran evolution is based largely on a single Microraptor specimen. A survey of 92 feathered non-avian dinosaur and stem bird fossils did not find additional molting evidence. Due to its longer duration, in ornithological collections evidence of molt is found more frequently in extant bird species with sequential molts compared to those with more rapid simultaneous molts. The low frequency of molt occurrence among fossil specimens resembles collections of bird species with simultaneous molts. The dearth of molt evidence in the forelimbs of pennaraptoran specimens may have interesting implications regarding molt strategy during early avian evolution, and suggests that the yearly molting cycle may have evolved later, among crown birds.


Subject(s)
Dinosaurs , Animals , Dinosaurs/anatomy & histology , Phylogeny , Molting , Fossils , Wings, Animal , Birds
9.
Curr Zool ; 69(3): 255-263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37351297

ABSTRACT

According to classical prediction of aerodynamic theory, birds and other powered fliers that migrate over long distances should have longer and more pointed wings than those that migrate less. However, the association between wing morphology and migratory behavior can be masked by contrasting selective pressures related to foraging behavior, habitat selection and predator avoidance, possibly at the cost of lower flight energetic efficiency. We studied the handwing morphology of Eurasian barn swallows Hirundo rustica from four populations representing a migration distance gradient. This species is an aerial insectivore, so it flies extensively while foraging, and may migrate during the day using a 'fly-and-forage' migration strategy. Prolonged foraging flights may reinforce the effects of migration distance on flight morphology. We found that two wings' aerodynamic properties-isometric handwing length and pointedness, both favoring energetically efficient flight, were more pronounced in barn swallows from populations undertaking longer seasonal migrations compared to less migratory populations. Our result contrast with two recent interspecific comparative studies that either reported no relationship or reported a negative relationship between pointedness and the degree of migratory behavior in hirundines. Our results may thus contribute to confirming the universality of the rule that longer migrations are associated with more pointed wings.

10.
Microorganisms ; 10(7)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889112

ABSTRACT

The migratory behavior of wild birds contributes to the geographical spread of ticks and their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from 244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes was the most common tick species and had a high prevalence of Francisella, including co-occurrence of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of H. rufipes.

11.
Sci Rep ; 11(1): 21573, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732791

ABSTRACT

The evolutionary history of many organisms is characterized by major changes in morphology and distribution. Specifically, alterations of body mass and geographic distribution may profoundly influence organismal life-history traits. Here, we reconstructed the evolutionary history of flight-feather molt strategy using data from 1,808 Neornithes species. Our analysis suggests that the ancestral molt strategy of first-year birds was partial or entirely absent, and that complete wing flight-feather molt in first-year birds first evolved in the late Eocene and Oligocene (25-40 Ma), at least 30 Myr after birds first evolved. Complete flight-feather molt occurred mainly at equatorial latitudes and in relatively low body mass species, following a diversification of body mass within the lineage. We conclude that both body mass and geographic distribution shaped the evolution of molt strategies and propose that the evolutionary transition towards complete juvenile molt in the Neornithes is a novel, relatively late adaptation.


Subject(s)
Biological Evolution , Birds/anatomy & histology , Feathers/anatomy & histology , Molting/physiology , Wings, Animal/anatomy & histology , Animals , Ecology , Flight, Animal , Geography , Phylogeny , Regression Analysis , Species Specificity
12.
Sci Rep ; 11(1): 5184, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664291

ABSTRACT

The rapid pace of current global warming lead to the advancement of spring migration in the majority of long-distance migratory bird species. While data on arrival timing to breeding grounds in Europe is plentiful, information from the African departure sites are scarce. Here we analysed changes in arrival timing at a stopover site in Israel and any links to Enhanced Vegetation Index (EVI) on the species-specific African non-breeding range in three migratory passerines between 2000-2017. Differences in wing length between early and late arriving individuals were also examined as a proxy for migration distance. We found that male redstart, but not females, advanced arrival to stopover site, but interestingly, not as a response to EVI phenology. Blackcap and barred warbler did not shift arrival timing significantly, although the arrival of blackcap was dependent on EVI. Barred warbler from the early arrival phase had longer wings, suggesting different populations. Our study further supports the existence species-specific migration decisions and inter-sexual differences, which may be triggered by both exogenous (local vegetation condition) and endogenous cues. Given rapid rate of changes in environmental conditions at higher latitudes, some migrants may experience difficulty in the race to match global changes to ensure their survival.

13.
One Health ; 13: 100349, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34825045

ABSTRACT

INTRODUCTION: The ecology of the vertebrate host contributes to the geographical range expansion of ticks. In this study, we investigated which tick taxa that infest and are dispersed by birds along African-Western Palaearctic flyways during northward migration, and whether bird ecology was associated with tick taxa. MATERIALS AND METHODS: Ticks were collected from birds trapped at bird observatories in Spain, Italy, Greece, and Israel during the spring migration of 2014 and 2015, using mist nets. The tick-infested bird species were classified into guilds, using different combinations of the variables: migration distance, wintering region, foraging behaviour, and winter habitat. Ticks were molecularly determined to genus and species level by sequencing fragments of the 12S ribosomal DNA (rDNA) gene and by phylogenetic inference, using the Maximum Likelihood algorithm. Data were analysed using descriptive measures, graphs, Chi2 tests, the Tukey-Kramer test, and a parametric linear model (generalized linear model) in order to analyse and adjust for characteristics in the bird guilds and their relationship to collected tick taxa. RESULTS: Most (84.2%) of the 10,209 trapped birds were long-distance migrants, of which 2.4% were infested by ticks. The most common tick species was Hyalomma rufipes (77.7%; 447/575), a known vector and reservoir of Crimean-Congo hemorrhagic fever virus. Bird guilds containing only long-distance migrants with wintering areas in Africa were associated with the tick species H. rufipes (p < 0.0001). Furthermore, bird winter habitat was associated with H. rufipes (p = 0.003); with bird species overwintering in open habitat (p = 0.014) and wetlands (p = 0.046) having significantly more H. rufipes as compared to birds with a winter habitat comprising forest and shrubs (p = 0.82). CONCLUSIONS: With climate change, the likelihood of establishment of permanent Hyalomma populations in central and northern Europe is increasing. Thus, surveillance programs for monitoring the risk of introduction and establishment of H. rufipes in the Western-Palaearctic should be established. Our study suggests that migratory bird species wintering in African open habitats and wetlands are good candidates for monitoring potential introduction.

14.
Curr Biol ; 30(18): 3633-3638.e2, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32679101

ABSTRACT

Feather molt is an important life-history process in birds, but little is known about its evolutionary history. Here, we report on the first fossilized evidence of sequential wing feather molt, a common strategy among extant birds, identified in the Early Cretaceous four-winged dromaeosaurid Microraptor. Analysis of wing feather molt patterns and ecological properties in extant birds imply that Microraptor maintained its flight ability throughout the entire annual cycle, including the molt period. Therefore, we conclude that flight was essential for either its daily foraging or escaping from predators. Our findings propose that the development of sequential molt is the outcome of evolutionary forces to maintain flight capability throughout the entire annual cycle in both extant birds and non-avialan paravian dinosaurs from 120 mya. VIDEO ABSTRACT.


Subject(s)
Dinosaurs/physiology , Ecosystem , Feathers/physiology , Flight, Animal/physiology , Molting/physiology , Wings, Animal/physiology , Animals , Dinosaurs/anatomy & histology , Dinosaurs/classification , Feathers/anatomy & histology , Wings, Animal/anatomy & histology
15.
PLoS One ; 14(12): e0226819, 2019.
Article in English | MEDLINE | ID: mdl-31891943

ABSTRACT

Many ground-nesting bird species are suffering from habitat loss and population decline. Data on population ecology and demography in colonies of threatened species are thus essential for designing effective conservation protocols. Here, we used extensive ringing and observation data to estimate directly, for the first time, the survival rate of juvenile and adult Little Tern (Sternula albifrons), as well as testing for a possible effect of age on probability of survival. We estimated adult annual survival rate to be 0.77, and juvenile (first year) survival to be 0.49 with a possible linear decrease in the survival rate of the juveniles that ranged from 0.681 to 0.327. We found no evidence that survival was age-dependent among the early age classes after the first year. We discuss these findings in light of survival estimates for other species, and their implications for the Little Tern conservation.


Subject(s)
Charadriiformes , Endangered Species , Age Factors , Animals , Ecosystem , Israel , Models, Biological , Population Dynamics
16.
Biol Rev Camb Philos Soc ; 94(2): 700-720, 2019 04.
Article in English | MEDLINE | ID: mdl-30334341

ABSTRACT

Although feathers are the unifying characteristic of all birds, our understanding of the causes, mechanisms, patterns and consequences of the feather moult process lags behind that of other major avian life-history phenomena such as reproduction and long-distance migration. Migration, which evolved in many species of the temperate and arctic zones, requires high energy expenditure to endure long-distance journeys. About a third of Western-Palearctic passerines perform long-distance migrations of thousands of kilometres each year using various morphological, physiological, biomechanical, behavioural and life-history adaptations. The need to include the largely non-overlapping breeding, long-distance migration and feather moult processes within the annual cycle imposes a substantial constraint on the time over which the moult process can take place. Here, we review four feather-moult-related adaptations which, likely due to time constraints, evolved among long-distance Western-Palearctic migrants: (i) increased moult speed; (ii) increased overlap between moult and breeding or migration; (iii) decreased extent of plumage moult; and (iv) moult of part or all of the plumage during the over-wintering period in the tropics rather than in the breeding areas. We suggest that long-distance migration shaped the evolution of moult strategies and increased the diversity of these strategies among migratory passerines. In contrast to this variation, all resident passerines in the Western Palearctic moult immediately after breeding by renewing the entire plumage of adults and in some species also juveniles, while in other species juvenile moult is partial. We identify important gaps in our current understanding of the moult process that should be addressed in the future. Notably, previous studies suggested that the ancestral moult strategy is a post-breeding summer moult in the Western Palearctic breeding areas and that moult during the winter evolved due to the scheduling of long-distance migration immediately after breeding. We offer an alternative hypothesis based on the notion of southern ancestry, proposing that the ancestral moult strategy was a complete moult during the 'northern winter' in the Afro-tropical region in these species, for both adults and juveniles. An important aspect of the observed variation in moult strategies relates to their control mechanisms and we suggest that there is insufficient knowledge regarding the physiological mechanisms that are involved, and whether they are genetically fixed or shaped by environmental factors. Finally, research effort is needed on how global climate changes may influence avian annual routines by altering the scheduling of major processes such as long-distance migration and feather moult.


Subject(s)
Animal Migration/physiology , Molting/physiology , Passeriformes/physiology , Age Factors , Analysis of Variance , Animals , Biological Evolution , Breeding , Climate , Feathers/growth & development , Female , Male , Seasons , Sex Factors , Time Factors
17.
PLoS One ; 14(1): e0210268, 2019.
Article in English | MEDLINE | ID: mdl-30608988

ABSTRACT

The Common Chiffchaff Phylloscopus collybita is an abundant, polytypic Palearctic bird. Validity of some of its subspecies is controversial and birds from some parts of the species range remain unclassified taxonomically. The relationships among populations from different geographic areas have not been sufficiently explored with molecular data. In this study we analyzed the relationships among the four species in the 'chiffchaff complex' (Common Chiffchaff, Iberian Chiffchaff P. ibericus, Canary Islands Chiffchaff P. canariensis and Mountain Chiffchaff P. sindianus), and the patterns of intraspecific geographic variation in the mtDNA ND2 gene and intron 9 of the Z-linked aconitase gene (ACO1I9) across the Common Chiffchaff range, including a recently discovered population breeding on Mt. Hermon (Anti-Lebanon mountains). Our data supported the monophyly of the chiffchaff complex and its current systematics at the species level. Within the Common Chiffchaff, the Siberian race P. c. tristis was the most differentiated subspecies and may represent a separate or incipient species. Other Common Chiffchaff subspecies also were differentiated in their mtDNA, however, lineages of neighboring subspecies formed wide zones of introgression. The Mt. Hermon population was of mixed genetic origin but contained some birds with novel unique lineage that could not be assigned to known subspecies. All Common Chiffchaff lineages diverged at the end of the Ionian stage of Pleistocene. Lineage sorting of ACO1I9 alleles was not as complete as that of mtDNA. Chiffchaff species were mostly distinct at ACO1I9, except the Common and Canary Islands Chiffchaffs that shared multiple alleles. An AMOVA identified geographic structure in Common Chiffchaff ACO1I9 variation that was broadly consistent with that of mtDNA ND2 gene. The genetic and other data suggest the chiffchaff complex to be a group of evolutionarily young taxa that represent a paradigm of 'species evolution in action' from intergrading subspecies through to apparently complete biological speciation.


Subject(s)
Aconitate Hydratase/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Variation , NADH Dehydrogenase/genetics , Passeriformes/genetics , Animals , Haplotypes , Phylogeography
18.
PLoS One ; 12(10): e0187282, 2017.
Article in English | MEDLINE | ID: mdl-29088288

ABSTRACT

Wing morphology strongly affects flight performance which may consequently decline during feather moult due to the creation of feather gaps in the wing. Hence, the size and shape of moult-related wing gap may directly affect flight capacity. Here I examined the rare divergent primary moult sequence compared to the more common descendant moult sequence. In the divergent moult, the focus of primary moult is shifted from P1 (primary feather numbered descendantly) to another primary between P2 and P5, and then primaries are moulted in two concurrent waves, one descendant and the other ascendant. The result of this rare moult sequence is the splitting of the wing gap to two smaller gaps. Using a large moult database including 6,763 individuals of 32 Western Palaearctic passerine species, I found evidence of divergent moult only among 27 individuals of 12 species. I examined the speed of wing-feather moult for each individual that moulted divergently compared to a control group of individuals at the same moult stage which moulted following the common descending sequence. The results indicate that the sequence of primary moult and moult speed are correlated. Individuals which moulted divergently moulted their primaries with higher moult speed than descendant moulters. The applicability of this study is weakened by the dearth of moult data, thus making it difficult to draw conclusions for a large range of species. Ornithologists and bird ringers are therefore encouraged to collect more basic moult data during their field study.


Subject(s)
Molting/physiology , Passeriformes/physiology , Wings, Animal/physiology , Animals , Feathers/anatomy & histology , Feathers/physiology , Flight, Animal/physiology , Israel , Passeriformes/anatomy & histology , Songbirds/anatomy & histology , Songbirds/physiology , Time Factors , Wings, Animal/anatomy & histology
19.
PLoS One ; 11(1): e0147471, 2016.
Article in English | MEDLINE | ID: mdl-26797292

ABSTRACT

Adult passerines renew their flight feathers at least once every year. This complete moult occurs either in the breeding areas, just after breeding (summer moult), or, in some long-distance migratory species, at the non-breeding areas, after arrival to the southern wintering area at the end of autumn migration (winter moult). The aim of this study was to relate moult strategies with the DMD, the difference in median migration date, through Israel, between juveniles and adults. Our data on autumn migration timing in juveniles and adults was based on ringing data of 49,125 individuals belonging to 23 passerine species that breed in Europe and Western Asia and migrate through Israel. We found that DMD was associated with moult timing. In all species that perform a winter moult, adults preceded juveniles during autumn. Among migrants who perform a summer moult, we found evidence of both migration timing patterns: juveniles preceding adults or adults preceding juveniles. In addition, in summer moulters, we found a significant, positive correlation between mean breeding latitude and DMD. Although previous studies described that moult duration and extent can be affected by migration, we suggest that moult strategies affect both migration timing and migration strategy. These two moult strategies (summer or winter moult) also represent two unique migration strategies. Our findings highlight the evolutionary interplay between moult and migration strategies.


Subject(s)
Animal Migration/physiology , Biological Evolution , Molting/physiology , Passeriformes/physiology , Seasons , Age Factors , Animals , Mediterranean Region , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL