Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Nat Immunol ; 18(2): 173-183, 2017 02.
Article in English | MEDLINE | ID: mdl-27992401

ABSTRACT

Most Foxp3+ regulatory T (Treg) cells develop in the thymus as a functionally mature T cell subpopulation specialized for immune suppression. Their cell fate appears to be determined before Foxp3 expression; yet molecular events that prime Foxp3- Treg precursor cells are largely obscure. We found that Treg cell-specific super-enhancers (Treg-SEs), which were associated with Foxp3 and other Treg cell signature genes, began to be activated in Treg precursor cells. T cell-specific deficiency of the genome organizer Satb1 impaired Treg-SE activation and the subsequent expression of Treg signature genes, causing severe autoimmunity due to Treg cell deficiency. These results suggest that Satb1-dependent Treg-SE activation is crucial for Treg cell lineage specification in the thymus and that its perturbation is causative of autoimmune and other immunological diseases.


Subject(s)
Cell Differentiation/immunology , Forkhead Transcription Factors/metabolism , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocytes, Regulatory/physiology , Transcriptional Activation/immunology , Animals , Autoimmunity , Cell Lineage , Cells, Cultured , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Immune Tolerance , Male , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Precursor Cells, T-Lymphoid/physiology
3.
Int Immunol ; 36(4): 167-182, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38169425

ABSTRACT

Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Animals , Mice , Down-Regulation , Forkhead Transcription Factors/metabolism , Chromatin/metabolism , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35140181

ABSTRACT

Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8- CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.


Subject(s)
Immunologic Memory , Neoplasms/metabolism , Receptors, CCR8/metabolism , Animals , Antibodies, Monoclonal , Biomarkers, Tumor , Cell Differentiation , Cell- and Tissue-Based Therapy , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Mice , Receptors, CCR8/genetics , T-Lymphocytes, Regulatory
6.
Int Immunol ; 32(5): 347-357, 2020 05 08.
Article in English | MEDLINE | ID: mdl-31950169

ABSTRACT

OBJECTIVE: CD4+CD8+ T cells are expressed in some cancer patients including those with renal cell carcinoma (RCC). However, no reports have mentioned the clinical importance of this expression. We evaluated the expression of CD4+CD8+ T cells in patients with various cancer types to clarify clinical characteristics and prognostic importance significantly correlating with these T cells. METHODS: Expression of CD4+CD8+ T cells was evaluated using flowcytometry in tissue-infiltrating lymphocytes extracted from 260 cancer tissues including 104 RCC samples. RNA sequencing and characterization and regression (Citrus) was used to determine characteristics. The prognostic importance of CD4+CD8+ T cells was evaluated by Cox regression analysis. RESULTS: Among eight cancer types, expression of CD4+CD8+ T cells was significantly highest in RCC patients. According to the expression of CD4+CD8+ T cells in adjacent normal tissue-infiltrating lymphocytes, 24 patients (23.1%) were defined as being positive for CD4+CD8+ with an expression higher than 9.29% in RCC patients. Citrus showed CD8+PD-1+TIM-3+CD103- T cells to be a specific subpopulation of CD4+CD8+ T cells. RNA sequencing revealed that CD4+CD8+ T cells had significantly lower diversity than the other T cells and shared most T-cell receptor clones with CD8+ not CD4+ T cells. Expression of CD4+CD8+ T cells was identified as an independent predictor of overall survival (hazard ratio: 0.11, 95% confidence interval: 0.01-0.86, P = 0.035) in multivariate analysis. CONCLUSIONS: The expression of CD4+CD8+ T cells was significantly up-regulated in RCC patients and correlated significantly with prognostic importance in surgically treated RCC patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/immunology , Adult , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Female , Humans , Male , Middle Aged
7.
Proc Natl Acad Sci U S A ; 114(31): E6400-E6409, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28698369

ABSTRACT

T-follicular helper (Tfh) cells differentiate through a multistep process, culminating in germinal center (GC) localized GC-Tfh cells that provide support to GC-B cells. T-follicular regulatory (Tfr) cells have critical roles in the control of Tfh cells and GC formation. Although Tfh-cell differentiation is inhibited by IL-2, regulatory T (Treg) cell differentiation and survival depend on it. Here, we describe a CD25- subpopulation within both murine and human PD1+CXCR5+Foxp3+ Tfr cells. It is preferentially located in the GC and can be clearly differentiated from CD25+ non-GC-Tfr, Tfh, and effector Treg (eTreg) cells by the expression of a wide range of molecules. In comparison to CD25+ Tfr and eTreg cells, CD25- Tfr cells partially down-regulate IL-2-dependent canonical Treg features, but retain suppressive function, while simultaneously up-regulating genes associated with Tfh and GC-Tfh cells. We suggest that, similar to Tfh cells, Tfr cells follow a differentiation pathway generating a mature GC-localized subpopulation, CD25- Tfr cells.


Subject(s)
Germinal Center/cytology , Germinal Center/immunology , Interleukin-2 Receptor alpha Subunit/genetics , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Down-Regulation/immunology , Forkhead Transcription Factors/biosynthesis , Humans , Interleukin-2 Receptor alpha Subunit/biosynthesis , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Receptors, CXCR5/biosynthesis , Repressor Proteins/biosynthesis
8.
J Pharmacol Exp Ther ; 357(2): 258-63, 2016 May.
Article in English | MEDLINE | ID: mdl-26945086

ABSTRACT

Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis.


Subject(s)
Anti-Allergic Agents/pharmacology , Cryptomeria/immunology , Pollen/immunology , Prostaglandin Antagonists/therapeutic use , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Rhinitis, Allergic/physiopathology , Animals , Cytokines/biosynthesis , Female , Immunoglobulin E/blood , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Nasal Obstruction/etiology , Nasal Obstruction/prevention & control , Plant Extracts , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , Sneezing
9.
Biochem Biophys Res Commun ; 417(3): 1014-7, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22209789

ABSTRACT

Sphingomyelin (SM) plays important roles in regulating structure and function of plasma membrane, but how intracellular localization of SM is regulated in neuronal cells is not understood. Here we show that two isoforms of SM synthase (SMS) are differentially expressed in neuronal subtypes and that only SMS2 proteins localize in neurites of hippocampal neurons. Moreover, SMS proteins induce Lysenin-binding SM clusters exclusively in their vicinity although neurons hardly contain such cluster under control condition. These findings indicate three important notions about SM metabolism in neurons. First, the activity of SMS is the rate-limiting step of SM cluster formation. Second, the SM content or clustering can be modulated by SMS activity. Third, SMS1 and SMS2 play distinct roles in regulating local SM clustering. Particularly, SMS2, rather than SMS1, is likely to be the major enzyme that is important for SM synthesis in the long neurites and its tip, the growth cone.


Subject(s)
Hippocampus/enzymology , Neurons/enzymology , Sphingomyelins/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Animals , Cells, Cultured , Isoenzymes/metabolism , Membrane Microdomains/enzymology , Membrane Microdomains/metabolism , Mice
10.
Sci Rep ; 12(1): 5377, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354899

ABSTRACT

Regulatory T cells (Tregs) suppress the host immune response and maintain immune homeostasis. Tregs also promote cancer progression and are involved in resistance to immune checkpoint inhibitor treatments. Recent studies identified selective CCR8 expression on tumor-infiltrating Tregs; CCR8+ Tregs have been indicated as a possible new target of cancer immunotherapy. Here, we investigated the features of CCR8+ Tregs in lung cancer patients. CCR8+ Tregs were highly activated and infiltration of CCR8+ Tregs in tumors was associated with poor prognosis in lung cancer patients. We also investigated their immune suppressive function, especially the influence on cytotoxic T lymphocyte cell function. The Cancer Genome Atlas analysis revealed that CD8 T cell activities were suppressed in high CCR8-expressing tumors. Additionally, depletion of CCR8+ cells enhanced CD8 T cell function in an ex vivo culture of lung tumor-infiltrating cells. Moreover, CCR8+ Tregs, but not CCR8- Tregs, induced from human PBMCs markedly suppressed CD8 T cell cytotoxicity. Finally, we demonstrated the therapeutic effect of targeting CCR8 in a murine model of lung cancer. These findings reveal the significance of CCR8+ Tregs for immunosuppression in lung cancer, especially via cytotoxic T lymphocyte cell suppression, and suggest the potential value of CCR8-targeted therapy for cancer treatment.


Subject(s)
Lung Neoplasms , T-Lymphocytes, Regulatory , Animals , Humans , Immune Tolerance , Immunotherapy , Lung Neoplasms/pathology , Mice , Receptors, CCR8/metabolism , T-Lymphocytes, Cytotoxic
11.
Sci Rep ; 10(1): 6220, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32277125

ABSTRACT

It is important to evaluate the clinical importance of both CD8 T cells and CD4 T cells expression simultaneously because they have crucial networks in tumour targeting immune responses. In 97 RCC patients, RNA sequencing and gene set enrichment analysis of both CD8 and CD4 T cells based on the expression levels of PD-1 and TIM-3 implied that the populations of PD-1+TIM-3+ CD8 T cells and PD-1lowTIM-3 + CD4 T cells were characterized as exhausted CD8 T cells and regulatory CD4 T cells, respectively. These populations of CD4 and CD8 T cells were significantly upregulated in the patients with RCC of higher WHO/ISUP grade (grades 3, 4) (P < 0.001). Moreover, the cytokine productivities of each population in both CD4 and CD8 T cells of the higher-grade patients were significantly lower than those of the lower-grade patients (P < 0.05). Multivariate analysis showed the prognosis of patients with metastatic RCC of higher WHO/ISUP grade treated by nivolumab to be significantly worse than that of patients with lower grade (P = 0.026). This study showed that tumour grade significantly correlated with dysfunction of both CD4+ and CD8+ TILs and the efficacy of nivolumab treatment.


Subject(s)
Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/diagnosis , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/mortality , Cytokines/metabolism , Female , Follow-Up Studies , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Kidney/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/mortality , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Neoplasm Grading , Nivolumab/pharmacology , Nivolumab/therapeutic use , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Progression-Free Survival , RNA-Seq , Retrospective Studies , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Treatment Outcome , Tumor Microenvironment/drug effects
12.
J Biochem ; 159(3): 305-12, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26491063

ABSTRACT

Reelin is a secreted glycoprotein whose function is regulated by proteolysis. One of the specific cleavage sites of Reelin, called C-t, is located approximately between the sixth and seventh Reelin repeat but its exact site was unknown. We here show that a metalloprotease present in the culture supernatant of cerebellar granular neurons (CGN) cleaves Reelin between Ala2688 and Asp2689. A Reelin mutant in which Asp2689 is replaced by Lys (Reelin-DK) is resistant to C-t cleavage by culture supernatant of CGN. From biochemical characteristics and the cleavage site preference, meprin α and meprin ß were suggested candidate proteases and both were confirmed to cleave Reelin at the C-t site. Meprin α cleaved Reelin-DK but meprin ß did not. Actinonin, a meprin α and meprin ß inhibitor, did not inhibit the Reelin-cleaving activity of CGN and the amount of Reelin fragments in brains of meprin ß knock-out mice was not significantly different from that of the wild-type, indicating that meprin ß does not play a major role in Reelin cleavage under basal conditions. We propose that meprin α and meprin ß join the modulators of Reelin signalling as they cleave Reelin at a specific site and are upregulated under specific pathological conditions.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cerebral Cortex/cytology , Extracellular Matrix Proteins/metabolism , Metalloendopeptidases/metabolism , Nerve Tissue Proteins/metabolism , Neurons/enzymology , Proteolysis , Serine Endopeptidases/metabolism , Animals , COS Cells , Cell Culture Techniques , Chlorocebus aethiops , HEK293 Cells , Humans , Hydroxamic Acids/pharmacology , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Reelin Protein , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL