Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Invertebr Pathol ; 175: 107442, 2020 09.
Article in English | MEDLINE | ID: mdl-32663545

ABSTRACT

Double-stranded RNA (dsRNA) is employed to down-regulate the expression of specific genes of shrimp viral pathogens through the RNA interference (RNAi) pathway. The administration of dsRNA into shrimp has been shown to be an effective strategy to block yellow head virus (YHV) progression. In this study, a vector (pLVX-AcGFP1-N1) was developed to introduce a long-hairpin RNA (lhRNA) silencing cassette under a CMV promoter, so-called "pLVX-lhRdRp", against the RNA-dependent RNA polymerase (RdRp) gene of YHV. A primary culture of hemocytes isolated from Penaeus monodon was transfected with the pLVX-lhRdRp vector, generating transcripts of lhRNAs as early as 12 h post transfection. Twelve hours prior to YHV challenge, the primary hemocyte cell culture was transfected with pLVX-lhRdRp, whereas control groups were transfected with pLVX-AcGFP1-N1 or no transfection. The group treated with pLVX-lhRdRp significantly suppressed YHV replication at 24-72 h after YHV challenge. The results from RT-PCR and immunohistochemistry confirmed that both mRNA and protein expression of YHV were effectively inhibited by the pLVX-lhRdRp vector. Thus, our hemocyte culture and dsRNA expression plasmid with constitutive promoter have potential as a platform to test DNA constructs expressing long-hairpin RNA against pathogenic viral infection and as a RNAi-based DNA vaccine in shrimp.


Subject(s)
Hemocytes/virology , Penaeidae/virology , RNA Interference , RNA, Double-Stranded/metabolism , Roniviridae/physiology , Virus Replication , Animals
2.
J Virol ; 91(6)2017 03 15.
Article in English | MEDLINE | ID: mdl-28077635

ABSTRACT

Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses.IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.


Subject(s)
Dicistroviridae/ultrastructure , Virion/ultrastructure , Animals , Bees/virology , Capsid Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Viral Structures
3.
Virus Res ; 189: 133-5, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-24892889

ABSTRACT

The suppression of viral replication by double-stranded RNAs (dsRNA) specific to mRNAs of either virus or host genes has been widely investigated as a possible shrimp disease therapy. PmYRP65, a yellow head virus (YHV) receptor, was previously identified and characterized in the black tiger shrimp, Penaeus monodon. In our previous study, entry of YHV into cells of the Oka organ of P. monodon required the host receptor PmYRP65 and silencing of PmYRP65 in vitro led to a complete suppression of YHV replication in the cells. In this study, PmYRP65 was shown to be in vivo suppressed by dsRNA specific for PmYRP65, leading to inhibition of YHV replication and almost complete abolition of shrimp mortality following YHV challenge. Targeting PmYRP65 could be an effective YHV antiviral shrimp strategy.


Subject(s)
Penaeidae/virology , Receptors, Virus/metabolism , Roniviridae/physiology , Virus Internalization , Animals , Gene Silencing , Receptors, Virus/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL