Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
Add more filters

Publication year range
1.
Planta Med ; 90(1): 13-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37832581

ABSTRACT

Glioblastoma is the most frequent primary malignant brain tumor without effective treatment, which makes this work extremely relevant. The study of the bioactive compounds from medicinal plants plays an important role in the discovery of new drugs.This research investigated the constituents of Tapirira guianensis and its antitumor potential (in vitro and in vivo) in glioblastoma. The T. guianensis extracts were characterized by mass spectrometry. The ethyl acetate partition (01ID) and its fractions 01ID-F2 and 01ID-F4 from T. guianensis showed potential antitumor treatment evidenced by selective cytotoxicity for GAMG with IC50 14.1 µg/mL, 83.07 µg/mL, 59.27 µg/mL and U251 with IC50 25.92 µg/mL, 37.3 µg/mL and 18.84 µg/mL. Fractions 01ID-F2 and 01ID-F4 were 10 times more selective when compared to TMZ and 01ID for the two evaluated cell lines. T. guianensis also reduced matrix metalloproteinases 2 - 01ID-F2 (21.84%), 01ID-F4 (29.6%) and 9 - 01ID-F4 (73.42%), ID-F4 (53.84%) activities, and induced apoptosis mainly through the extrinsic pathway. Furthermore, all treatments significantly reduced tumor size (01ID p < 0,01, 01ID-F2 p < 0,01 and 01ID-F4 p < 0,0001) and caused blood vessels to shrink in vivo. The present findings highlight that T. guianensis exhibits considerable antitumor potential in preclinical studies of glioblastoma. This ability may be related to the phenolic compounds and sesquiterpene derivatives identified in the extracts. This study deserves further in vivo research, followed by clinical investigation.


Subject(s)
Antineoplastic Agents , Glioblastoma , Plants, Medicinal , Glioblastoma/drug therapy , Plant Extracts/chemistry , Angiogenesis , Plants, Medicinal/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor
2.
Mar Drugs ; 22(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39195454

ABSTRACT

Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising and prolific source of bioactive compounds with potent anticancer properties. Despite their significant therapeutic potential, the clinical application of these peptides is hindered by challenges such as poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations, innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and prolonged therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies have shown promising results, indicating that nanocarrier-based delivery systems can significantly improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued exploration of marine algal peptides holds great promise for developing innovative, effective, and sustainable cancer therapies.


Subject(s)
Antineoplastic Agents , Apoptosis , DNA Repair , Neoplasms , Peptides , Humans , Apoptosis/drug effects , Peptides/pharmacology , Peptides/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , DNA Repair/drug effects , Cell Cycle/drug effects , Seaweed/chemistry , Microalgae/chemistry , Nanoparticles/chemistry , Aquatic Organisms
3.
Mar Drugs ; 22(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921583

ABSTRACT

The marine environment provides a rich source of distinct creatures containing potentially revolutionary bioactive chemicals. One of these organisms is Caulerpa racemosa, a type of green algae known as green seaweed, seagrapes, or green caviar. This organism stands out because it has great promise for use in medicine, especially in the study of cancer. Through the utilization of computational modeling (in silico) and cellular laboratory experiments (in vitro), the chemical components included in the green seaweed C. racemosa were effectively analyzed, uncovering its capability to treat non-small cell lung cancer (NSCLC). The study specifically emphasized blocking SRC, STAT3, PIK3CA, MAPK1, EGFR, and JAK1 using molecular docking and in vitro. These proteins play a crucial role in the EGFR Tyrosine Kinase Inhibitor Resistance pathway in NSCLC. The chemical Caulersin (C2) included in C. racemosa extract (CRE) has been identified as a potent and effective agent in fighting against non-small cell lung cancer (NSCLC), both in silico and in vitro. CRE and C2 showed a level of inhibition similar to that of osimertinib (positive control/NSCLC drug).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Caulerpa , Drug Resistance, Neoplasm , Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Caulerpa/chemistry , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Seaweed/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , ErbB Receptors/antagonists & inhibitors , Acrylamides/pharmacology , Acrylamides/chemistry
4.
Phytother Res ; 38(6): 3146-3168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616386

ABSTRACT

Hypertension, or high blood pressure (BP), is a complex disease influenced by various risk factors. It is characterized by persistent elevation of BP levels, typically exceeding 140/90 mmHg. Endothelial dysfunction and reduced nitric oxide (NO) bioavailability play crucial roles in hypertension development. L-NG-nitro arginine methyl ester (L-NAME), an analog of L-arginine, inhibits endothelial NO synthase (eNOS) enzymes, leading to decreased NO production and increased BP. Animal models exposed to L-NAME manifest hypertension, making it a useful design for studying the hypertension condition. Natural products have gained interest as alternative approaches for managing hypertension. Flavonoids, abundant in fruits, vegetables, and other plant sources, have potential cardiovascular benefits, including antihypertensive effects. Flavonoids have been extensively studied in cell cultures, animal models, and, to lesser extent, in human trials to evaluate their effectiveness against L-NAME-induced hypertension. This comprehensive review summarizes the antihypertensive activity of specific flavonoids, including quercetin, luteolin, rutin, troxerutin, apigenin, and chrysin, in L-NAME-induced hypertension models. Flavonoids possess antioxidant properties that mitigate oxidative stress, a major contributor to endothelial dysfunction and hypertension. They enhance endothelial function by promoting NO bioavailability, vasodilation, and the preservation of vascular homeostasis. Flavonoids also modulate vasoactive factors involved in BP regulation, such as angiotensin-converting enzyme (ACE) and endothelin-1. Moreover, they exhibit anti-inflammatory effects, attenuating inflammation-mediated hypertension. This review provides compelling evidence for the antihypertensive potential of flavonoids against L-NAME-induced hypertension. Their multifaceted mechanisms of action suggest their ability to target multiple pathways involved in hypertension development. Nonetheless, the reviewed studies contribute to the evidence supporting the useful of flavonoids for hypertension prevention and treatment. In conclusion, flavonoids represent a promising class of natural compounds for combating hypertension. This comprehensive review serves as a valuable resource summarizing the current knowledge on the antihypertensive effects of specific flavonoids, facilitating further investigation and guiding the development of novel therapeutic strategies for hypertension management.


Subject(s)
Antihypertensive Agents , Flavonoids , Hypertension , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Humans , Hypertension/drug therapy , Hypertension/chemically induced , Animals , Antioxidants/pharmacology , Nitric Oxide/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Oxidative Stress/drug effects , Blood Pressure/drug effects
5.
Phytother Res ; 38(3): 1235-1244, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176954

ABSTRACT

Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.


Subject(s)
Benzofurans , Prostatic Neoplasms , Sirtuin 1 , Humans , Male , Apoptosis , Cell Line, Tumor , Cell Proliferation , Glucose Transporter Type 1/metabolism , Glycolysis/physiology , Prostatic Neoplasms/metabolism , Sirtuin 1/metabolism
6.
Phytother Res ; 38(2): 1059-1070, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158648

ABSTRACT

Though cornin is known to induce angiogenic, cardioprotective, and apoptotic effects, the apoptotic mechanism of this iridoid monoglucoside is not fully understood in prostate cancer cells to date. To elucidate the antitumor mechanism of cornin, cytotoxicity assay, cell cycle analysis, Western blotting, RT-qPCR, RNA interference, immunofluorescence, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor assay were applied in this work. Cornin exerted cytotoxicity, increased sub-G1 population, and cleaved PARP and caspase3 in LNCaP cells more than in DU145 cells. Consistently, cornin suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) and disrupted the colocalization of STAT3 and androgen receptor (AR) in LNCaP and DU145 cells, along with suppression of AR, prostate-specific antigen (PSA), and 5α-reductase in LNCaP cells. Furthermore, cornin increased ROS production and the level of miR-193a-5p, while ROS inhibitor N-acetylcysteine disturbed the ability of cornin to attenuate the expression of AR, p-STAT3, PSA, pro-PARP, and pro-caspase3 in LNCaP cells. Notably, miR-193a-5p mimics the enhanced apoptotic effect of cornin, while miR-193a-5p inhibitor reverses the ability of cornin to abrogate AR, PSA, and STAT3 in LNCaP cells. Our findings suggest that ROS production and the disturbed crosstalk between STAT3 and AR by microRNA-193a-5p are critically involved in the apoptotic effect of cornin in prostate cancer cells.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/metabolism , Reactive Oxygen Species/metabolism , Prostate-Specific Antigen , STAT3 Transcription Factor/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , MicroRNAs/metabolism , Apoptosis , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation
7.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474045

ABSTRACT

Although Astragalus membranaceus is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of Astragalus membranaceus extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of Astragalus membranaceus (WAM) was investigated in prostate cancer cells in association with heat shock protein 27 (HSP27)/androgen receptor (AR) signaling. WAM increased cytotoxicity and the sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP) and cysteine aspartyl-specific protease 3 (caspase 3), and attenuated the expression of B-cell lymphoma 2 (Bcl-2) in LNCaP cells after 24 h of exposure. Consistently, WAM significantly increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive LNCaP cells. WAM decreased the phosphorylation of HSP27 on Ser82 and inhibited the expression of the AR and prostate-specific antigen (PSA), along with reducing the nuclear translocation of p-HSP27 and the AR via the disturbed binding of p-HSP27 with the AR in LNCaP cells. WAM consistently inhibited the expression of the AR and PSA in dihydrotestosterone (DHT)-treated LNCaP cells. WAM also suppressed AR stability, both in the presence and absence of cycloheximide, in LNCaP cells. Taken together, these findings provide evidence that WAM induces apoptosis via the inhibition of HSP27/AR signaling in prostate cancer cells and is a potent anticancer candidate for prostate cancer treatment.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Prostate-Specific Antigen/metabolism , HSP27 Heat-Shock Proteins/metabolism , Reactive Oxygen Species , Astragalus propinquus/metabolism , Prostatic Neoplasms/metabolism , Apoptosis , Cell Line, Tumor
8.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273365

ABSTRACT

Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the ß-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, ß-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed ß-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of ß-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit ß-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of ß-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of ß-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of ß-catenin/c-Myc/HK signaling in cervical cancer cells.


Subject(s)
Ginsenosides , Hexokinase , MicroRNAs , Proto-Oncogene Proteins c-myc , Signal Transduction , Uterine Cervical Neoplasms , beta Catenin , Humans , Ginsenosides/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Female , Signal Transduction/drug effects , Hexokinase/metabolism , Hexokinase/genetics , HeLa Cells , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Warburg Effect, Oncologic/drug effects , Apoptosis/drug effects
9.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542928

ABSTRACT

Diabetes, particularly type 2 diabetes (T2D), is the main component of metabolic syndrome. It is highly prevalent and has drastically increased with sedentary lifestyles, notably behaviors linked to ease of access and minimal physical activity. Central to this condition is insulin, which plays a pivotal role in regulating glucose levels in the body by aiding glucose uptake and storage in cells, and what happens to diabetes? In diabetes, there is a disruption and malfunction in insulin regulation. Despite numerous efforts, effectively addressing diabetes remains a challenge. This article explores the potential of photoactivatable drugs in diabetes treatment, with a focus on light-activated insulin. We discuss its advantages and significant implications. This article is expected to enrich the existing literature substantially, offering a comprehensive analysis of potential strategies for improving diabetes management. With its minimal physical intrusion, light-activated insulin promises to improve patient comfort and treatment adherence. It offers precise regulation and localized impact, potentially mitigating the risks associated with conventional diabetes treatments. Additionally, light-activated insulin is capable of explicitly targeting RNA and epigenetic factors. This innovative approach may pave the way for more personalized and effective diabetes treatments, addressing not only the symptoms but also the underlying biological causes of the disease. The advancement of light-activated insulin could revolutionize diabetes management. This study represents a pioneering introduction to this novel modality for diabetes management.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Humans , Insulin/metabolism , Blood Glucose , Diabetes Mellitus, Type 2/metabolism , Exercise
10.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474594

ABSTRACT

Enhalus arcoides is a highly beneficial type of seagrass. Prior studies have presented proof of the bioactivity of E. acoroides, suggesting its potential to combat cancer. Therefore, this study aims to delve deeper into E. acoroides bioactive molecule profiles and their direct biological anticancer activities potentials through the combination of in-silico and in-vitro studies. This study conducted metabolite profile analysis on E. acoroides utilizing HPLC-ESI-HRMS/MS analysis. Two extraction techniques, ethanol and hexane, were employed for the extraction process. Furthermore, the in-silico study was conducted using molecular docking simulations on the HER2, EGFR tyrosine kinase and HIF-1α protein receptor. Afterward, the antioxidant activity of E. acoroides metabolites was examined to ABTS, and the antiproliferative activity was tested using an MTT assay. An in-silico study revealed its ability to combat breast cancer by inhibiting the HER2/EGFR/HIF-1α pathway through molecular docking. In addition, the MTT assay demonstrated that higher dosages of metabolites from E. acoroides increased the effectiveness of toxicity against cancer cell lines. Additionally, the study demonstrated that the metabolites possess the ability to function as potent antioxidants, effectively inhibiting a series of carcinogenic mechanisms. Ultimately, this study showed a new approach to unveiling the E. acoroides metabolites' anticancer activity through inhibiting HER2/EGFR/HIF-1α receptors, with great cytotoxicity and a potent antioxidant property to prevent a carcinogenic cascade.


Subject(s)
Breast Neoplasms , Humans , Female , Molecular Docking Simulation , Ethanol , ErbB Receptors
11.
Semin Cancer Biol ; 86(Pt 2): 1066-1075, 2022 11.
Article in English | MEDLINE | ID: mdl-34428551

ABSTRACT

Since cancer immunotherapy with immune checkpoint inhibitors of PD/PDL-1 and CTLA-4 limited efficacy to the patients due to resistance during the current decade, novel target is required for customized treatment due to tumor heterogeneity. V-domain Ig-containing suppressor of T cell activation (VISTA), a programmed death protein-1(PD-1) homolog expressed on T cells and on antigen presenting cells(APC), has emerged as a new target in several cancers. Though VISTA inhibitors including CA-170 are considered attractive in cancer immunotherapy to date, the information on VISTA as a potent biomarker of cancer prognosis and its combination therapy is still lacking to date. Thus, in this review, we discussed extracellular domain, ligands, expression, immune functions and clinical implications of VISTA and finally suggested conclusion and perspectives.


Subject(s)
Immunotherapy , Neoplasms , Humans , Ligands , Lymphocyte Activation , Neoplasms/therapy , Neoplasms/pathology , Prognosis
12.
Mol Divers ; 27(2): 857-871, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35639226

ABSTRACT

SARS-CoV-2 is the foremost culprit of the novel coronavirus disease 2019 (nCoV-19 and/or simply COVID-19) and poses a threat to the continued life of humans on the planet and create pandemic issue globally. The 3-chymotrypsin-like protease (MPRO or 3CLPRO) is the crucial protease enzyme of SARS-CoV-2, which directly involves the processing and release of translated non-structural proteins (nsps), and therefore involves the development of virus pathogenesis along with outbreak the forecasting of COVID-19 symptoms. Moreover, SARS-CoV-2 infections can be inhibited by plant-derived chemicals like amentoflavone derivatives, which could be used to develop an anti-COVID-19 drug. Our research study is designed to conduct an in silico analysis on derivatives of amentoflavone (isoginkgetin, putraflavone, 4''''''-methylamentoflavone, bilobetin, ginkgetin, sotetsuflavone, sequoiaflavone, heveaflavone, kayaflavone, and sciadopitysin) for targeting the non-structural protein of SARS-CoV-2, and subsequently further validate to confirm their antiviral ability. To conduct all the in silico experiments with the derivatives of amentoflavone against the MPRO protein, both computerized tools and online servers were applied; notably the software used is UCSF Chimera (version 1.14), PyRx, PyMoL, BIOVIA Discovery Studio tool (version 4.5), YASARA (dynamics simulator), and Cytoscape. Besides, as part of the online tools, the SwissDME and pKCSM were employed. The research study was proposed to implement molecular docking investigations utilizing compounds that were found to be effective against the viral primary protease (MPRO). MPRO protein interacted strongly with 10 amentoflavone derivatives. Every time, amentoflavone compounds outperformed the FDA-approved antiviral medicine that is currently underused in COVID-19 in terms of binding affinity (- 8.9, - 9.4, - 9.7, - 9.1, - 9.3, - 9.0, - 9.7, - 9.3, - 8.8, and - 9.0 kcal/mol, respectively). The best-selected derivatives of amentoflavone also possessed potential results in 100 ns molecular dynamic simulation (MDS) validation. It is conceivable that based on our in silico research these selected amentoflavone derivatives more precisely 4''''''-methylamentoflavone, ginkgetin, and sequoiaflavone have potential for serving as promising lead drugs against SARS-CoV-2 infection. In consequence, it is recommended that additional in vitro as well as in vivo research studies have to be conducted to support the conclusions of this current research study.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Peptide Hydrolases/metabolism
13.
Mol Divers ; 27(3): 1309-1322, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35821161

ABSTRACT

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/genetics , Hepacivirus/metabolism , Molecular Docking Simulation , Hepatitis C/drug therapy , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatocytes/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Tetraspanin 28/genetics , Tetraspanin 28/metabolism , Tetraspanin 28/pharmacology
14.
Phytother Res ; 37(2): 505-514, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36151597

ABSTRACT

The aim of the present study is to explore the underlying hepatoprotective mechanism of PKC#963, consisting of Pinus koraiensis, Saururus chinensis, and Lycium barbarum in association with acute and chronic liver injury induced by alcohol or carbon tetrachloride (CCl4). Here, PKC#963 significantly suppressed aspartate aminotransferase (AST), alanine aminotransferase (ALT), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2) in CCl4-treated HepG2 cells. Also, PKC#963 significantly suppressed reactive oxygen species (ROS) production in HepG2 cells. Consistently, PKC#963 suppressed the expression of AST, ALT, p-STAT3, iNOS, COX-2, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and α-smooth muscle actin (α-SMA) and increased procaspase 3 in the liver tissues of CCl4 treated rats. In addition, PKC#963 enhanced alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) for alcohol metabolism, superoxide dismutase (SOD), and catalase as antioxidant enzymes and also suppressed AST and ALT in alcohol-treated rats. Furthermore, PKC#963 reduced hepatic steatosis and necrosis in CCl4-treated rats by H&E (Hematoxylin and Eosin) staining. Taken together, these findings highlight evidence that PKC#963 has hepatoprotective potential via inhibition of iNOS, COX-2, and p-STAT3 and enhancement of SOD and catalase.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Rats , Animals , Catalase/metabolism , Cyclooxygenase 2/metabolism , Carbon Tetrachloride/toxicity , Nitric Oxide Synthase Type II/metabolism , STAT3 Transcription Factor/metabolism , Liver/metabolism , Ethanol , Superoxide Dismutase/metabolism , Alanine Transaminase/metabolism , Chemical and Drug Induced Liver Injury/pathology
15.
Phytother Res ; 37(9): 4092-4101, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37253375

ABSTRACT

Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor ß1 (TGF-ß1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-ß1-treated AML-12 cells. Consistently, Honokiol suppressed the expression of Snail and transmembrane protease serine 4 (TMPRSS4), but not p-Smad3, and activated E-cadherin in TGF-ß1-treated AML-12 cells. Additionally, Honokiol reduced the expression of ß-catenin, p-AKT, p-ERK, p-p38 and increased phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) and JNK in TGF-ß1-treated AML-12 cells via TGF-ß1/nonSmad pathway. Conversely, GSK3ß inhibitor SB216763 reversed the ability of Honokiol to reduce Snail, ß-catenin and migration and activate E-cadherin in TGF-ß1-treated AML-12 cells. Also, Honokiol suppressed hepatic steatosis and necrosis by reducing the expression of TGF-ß1 and α-SMA in liver tissues of CCl4 treated mice. These findings provide scientific evidence that Honokiol suppresses EMT and hepatic fibrosis via activation of E-cadherin/GSK3ß/JNK and inhibition of AKT/ERK/p38/ß-catenin/TMPRSS4 signaling axis.


Subject(s)
Leukemia, Myeloid, Acute , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt , Glycogen Synthase Kinase 3 beta , Epithelial-Mesenchymal Transition , Catenins/pharmacology , Fibrinolytic Agents/pharmacology , Cadherins , Liver Cirrhosis
16.
Phytother Res ; 37(9): 4224-4235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37235481

ABSTRACT

To elucidate the underlying antitumor mechanism of lambertianic acid (LA) derived from Pinus koraiensis, the role of cancer metabolism related molecules was investigated in the apoptotic effect of LA in DU145 and PC3 prostate cancer cells. MTT assay for cytotoxicity, RNA interference, cell cycle analysis for sub G1 population, nuclear and cytoplasmic extraction, lactate, Glucose and ATP assay by ELISA, Measurement of reactive oxygen species (ROS) generation, Western blotting, and immunoprecipitation assay were conducted in DU145 and PC3 prostate cancer cells. Herein LA exerted cytotoxicity, increased sub G1 population and attenuated the expression of pro-Caspase3 and pro-poly (ADP-ribose) polymerase (pro-PARP) in DU145 and PC3 cells. Also, LA reduced the expression of lactate dehydrogenase A (LDHA), glycolytic enzymes such as hexokinase 2 and pyruvate kinase M2 (PKM2) with reduced production of lactate in DU145 and PC3 cells. Notably, LA decreased phosphorylation of PKM2 on Tyr105 and inhibited the expression of p-STAT3, cyclin D1, C-Myc, ß-catenin, and p-GSK3ß with the decrease of nuclear translocation of p-PKM2. Furthermore, LA disturbed the binding of p-PKM2 and ß-catenin in DU145 cells, which was supported by Spearman coefficient (0.0463) of cBioportal database. Furthermore, LA generated ROS in DU145 and PC3 cells, while ROS scavenger NAC (N-acetyl L-cysteine) blocked the ability of LA to reduce p-PKM2, PKM2, ß-catenin, LDHA, and pro-caspase3 in DU145 cells. Taken together, these findings provide evidence that LA induces apoptosis via ROS generation and inhibition of PKM2/ß-catenin signaling in prostate cancer cells.


Subject(s)
Prostatic Neoplasms , beta Catenin , Male , Humans , Reactive Oxygen Species/pharmacology , Cell Line, Tumor , beta Catenin/metabolism , Apoptosis , Prostatic Neoplasms/metabolism , Lactates
17.
Phytother Res ; 37(10): 4473-4487, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37288731

ABSTRACT

Though Morusin is known to induce apoptotic, antiprolifertaive, and autophagic effects through several signaling pathways, the underlying molecular mechanisms of Morusin still remain unclear until now. To elucidate antitumor mechanism of Morusin, cytotoxicity assay, cell cycle analysis, Western blotting, TUNEL assay, RNA interference, immunofluorescense, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor study were applied in this study. Morusin enhanced cytotoxicity, increased the number of TUNEL positive cells, sub-G1 population and induced the cleavages of PARP and caspase3, attenuated the expression of HK2, PKM2, LDH, c-Myc, and Forkhead Box M1 (FOXM1) along with the reduction of glucose, lactate, and ATP in DU145 and PC3 cells. Furthermore, Morusin disrupted the binding of c-Myc and FOXM1 in PC-3 cells, which was supported by String and cBioportal database. Notably, Morusin induced c-Myc degradation mediated by FBW7 and suppressed c-Myc stability in PC3 cells exposed to MG132 and cycloheximide. Also, Morusin generated ROS, while NAC disrupted the capacity of Morusin to reduce the expression of FOXM1, c-Myc, pro-PARP, and pro-caspase3 in PC-3 cells. Taken together, these findings provide scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis plays a critical role in Morusin induced apoptotic and anti-Warburg effect in prostate cancer cells. Our findings support scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis is critically involved in apoptotic and anti-Warburg effect of Morusin in prostate cancer cells.


Subject(s)
Prostatic Neoplasms , Signal Transduction , Male , Humans , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Apoptosis , Cell Line, Tumor , Prostatic Neoplasms/metabolism , Cell Proliferation , Forkhead Box Protein M1/metabolism
18.
Phytother Res ; 37(1): 7-14, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35916211

ABSTRACT

Though icariside E4 (IE4) is known to have anti-noceptive, anti-oxidant, anti-Alzheimer and anti-inflammatory effects, there was no evidence on the effect of IE4 on lipid metabolism so far. Hence, the hypolipogenic mechanism of IE4 was investigated in HepG2 hepatocellular carcinoma cells (HCCs) in association with MID1 Interacting Protein 1(MID1IP1) and AMPK signaling. Here, IE4 did not show any toxicity in HepG2 cells, but reduced lipid accumulation in HepG2 cells by Oil Red O staining. MID1IP1 depletion decreased the expression of SREBP-1c and fatty acid synthase (FASN) and induced phosphorylation of ACC in HepG2 cells. Indeed, IE4 activated phosphorylation of AMPK and ACC and inhibited the expression of MID1IP1 in HepG2 cells. Furthermore, IE4 suppressed the expression of SREBP-1c, liver X receptor-α (LXR), and FASN for de novo lipogenesis in HepG2 cells. Interestingly, AMPK inhibitor compound C reversed the ability of IE4 to reduce MID1IP1, SREBP-1c, and FASN and activate phosphorylation of AMPK/ACC in HepG2 cells, indicating the important role of AMPK/ACC signaling in IE4-induced hypolipogenic effect. Taken together, these findings suggest that IE4 has hypolipogenic potential in HepG2 cells via activation of AMPK and inhibition of MID1IP1 as a potent candidate for treatment of fatty liver disease.


Subject(s)
AMP-Activated Protein Kinases , Lipid Metabolism , Humans , Hep G2 Cells , Phosphorylation , AMP-Activated Protein Kinases/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Lipogenesis , Fatty Acid Synthases/metabolism , Liver
19.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894916

ABSTRACT

Pancreatic cancer (PC) is currently recognized as the seventh most prevalent cause of cancer-related mortality among individuals of both genders. It is projected that a significant number of individuals will succumb to this disease in the forthcoming years. Extensive research and validation have been conducted on both gemcitabine and 5-fluorouracil as viable therapeutic options for PC. Nevertheless, despite concerted attempts to enhance treatment outcomes, PC continues to pose significant challenges in terms of achieving effective treatment alone through chemotherapy. Gallic acid, an endogenous chemical present in various botanical preparations, has attracted considerable attention due to its potential as an anticancer agent. The results of the study demonstrated that gallic acid exerted a decline in cell viability that was dependent on its concentration. Furthermore, it efficiently suppressed cell proliferation in PC cells. This study observed a positive correlation between gallic acid and the production of reactive oxygen species (ROS). Additionally, it confirmed the upregulation of proteins associated with the protein kinase-like endoplasmic reticulum kinase (PERK) pathway, which is one of the pathways involved in endoplasmic reticulum (ER) stress. Moreover, the administration of gallic acid resulted in verified alterations in the transmission of mitogen-activated protein kinase (MAPK) signals. Notably, an elevation in the levels of p-p38, which represents the phosphorylated state of p38 MAPK was detected. The scavenger of reactive oxygen species (ROS), N-Acetyl-L-cysteine (NAC), has shown inhibitory effects on phosphorylated p38 (p-p38), whereas the p38 inhibitor SB203580 inhibited C/EBP homologous protein (CHOP). In both instances, the levels of PARP have been successfully reinstated. In other words, the study discovered a correlation between endoplasmic reticulum stress and the p38 signaling pathway. Consequently, gallic acid induces the activation of both the p38 pathway and the ER stress pathway through the generation of ROS, ultimately resulting in apoptosis. The outcomes of this study provide compelling evidence to support the notion that gallic acid possesses considerable promise as a viable therapeutic intervention for pancreatic cancer.


Subject(s)
Gallic Acid , Pancreatic Neoplasms , Humans , Female , Male , Reactive Oxygen Species/metabolism , Gallic Acid/pharmacology , Apoptosis , Cell Line, Tumor , Endoplasmic Reticulum Stress , p38 Mitogen-Activated Protein Kinases/metabolism , Pancreatic Neoplasms/drug therapy
20.
Int J Mol Sci ; 24(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37762214

ABSTRACT

Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells. Consistently, Brassinin reduced the number of colonies and increased the sub-G1 population and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells in the PC-3 cells. Of note, Brassinin suppressed the expressions of pyruvate kinase-M2 (PKM2), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) as glycolytic proteins in the PC-3 cells. Furthermore, Brassinin significantly reduced the expressions of SIRT1, c-Myc, and ß-catenin in the PC-3 cells and also disrupted the binding of SIRT1 with ß-catenin, along with a protein-protein interaction (PPI) score of 0.879 and spearman's correlation coefficient of 0.47 being observed between SIRT1 and ß-catenin. Of note, Brassinin significantly increased the reactive oxygen species (ROS) generation in the PC-3 cells. Conversely, ROS scavenger NAC reversed the ability of Brassinin to attenuate pro-PARP, pro-Caspase3, SIRT1, and ß-catenin in the PC-3 cells. Taken together, these findings support evidence that Brassinin induces apoptosis via the ROS-mediated inhibition of SIRT1, c-Myc, ß-catenin, and glycolysis proteins as a potent anticancer candidate.


Subject(s)
Sirtuin 1 , beta Catenin , Humans , Apoptosis , beta Catenin/metabolism , Cell Line, Tumor , PC-3 Cells , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL