Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428393

ABSTRACT

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Subject(s)
DNA-Directed RNA Polymerases , Plastids , Chloroplasts/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/genetics , Nicotiana/genetics , Photosynthesis , Plastids/enzymology
2.
Cell ; 182(5): 1109-1124.e25, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32841601

ABSTRACT

Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.


Subject(s)
Cell Membrane/immunology , Chloroplasts/immunology , Plant Diseases/immunology , Plant Immunity/immunology , Signal Transduction/immunology , Arabidopsis Proteins/immunology , Host-Pathogen Interactions/immunology , Salicylic Acid/immunology , Virulence/immunology
3.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38041863

ABSTRACT

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Subject(s)
Adenine/analogs & derivatives , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salicylic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
4.
Proc Natl Acad Sci U S A ; 119(11): e2123353119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35275795

ABSTRACT

SignificanceAlthough plastid division is critical for plant development, how components of the plastid division machinery (PDM) are imported into plastids remains unexplored. A forward genetic screen to identify suppressors of a crumpled leaf (crl) mutant deficient in plastid division led us to find dominant gain-of-function (GF) mutations in TIC236, which significantly increases the import of PDM components and completely rescues crl phenotypes. The defective plastid division phenotypes in crl and tic236-knockdown mutants and CRL-TIC236 association in a functional complex indicate that the CRL-TIC236 module is vital for plastid division. Hence, we report the first GF translocon mutants and unveil CRL as a novel functional partner of TIC236 for PDM import.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Chloroplast Proteins , Membrane Transport Proteins , Plastids , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Gain of Function Mutation , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plastids/genetics , Plastids/metabolism , Protein Transport
5.
Plant J ; 114(2): 310-324, 2023 04.
Article in English | MEDLINE | ID: mdl-36752655

ABSTRACT

Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Arabidopsis Proteins/metabolism , Photosystem II Protein Complex/metabolism , Plastids/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Mutation , Methyltransferases/genetics , Methyltransferases/metabolism
6.
Plant Physiol ; 192(4): 3120-3133, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37096689

ABSTRACT

Chloroplast-to-nucleus retrograde signaling (RS) pathways are critical in modulating plant development and stress adaptation. Among chloroplast proteins mediating RS pathways, GENOMES UNCOUPLED1 (GUN1) represses the transcription of the nuclear transcription factors GOLDEN2-LIKE1 (GLK1) and GLK2 that positively regulate chloroplast biogenesis. Given the extensive exploration of the function of GUN1 in biogenic RS carried out in previous years, our understanding of its role in plant stress responses remains scarce. Here, we revealed that GUN1 contributes to the expression of salicylic acid (SA)-responsive genes (SARGs) through transcriptional repression of GLK1/2 in Arabidopsis (Arabidopsis thaliana). Loss of GUN1 significantly compromised the SA responsiveness in plants, concomitant with the upregulation of GLK1/2 transcripts. In contrast, knockout of GLK1/2 potentiated the expression of SARGs and led to enhanced stress responses. Chromatin immunoprecipitation, coupled with quantitative PCR and related reverse genetic approaches, unveiled that in gun1, GLK1/2 might modulate SA-triggered stress responses by stimulating the expression of WRKY18 and WRKY40, transcriptional repressors of SARGs. In summary, we demonstrate that a hierarchical regulatory module, consisting of GUN1-GLK1/2-WRKY18/40, modulates SA signaling, opening a research avenue regarding a latent GUN1 function in plant-environment interactions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
7.
Plant Cell ; 33(4): 1182-1195, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33693873

ABSTRACT

Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Arabidopsis/genetics , Binding Sites , Crystallography, X-Ray , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Promoter Regions, Genetic , Protein Domains , Trans-Activators/chemistry , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics
8.
Plant Physiol ; 188(4): 2308-2324, 2022 03 28.
Article in English | MEDLINE | ID: mdl-34951648

ABSTRACT

GOLDEN2-LIKE (GLK) transcription factors drive the expression of photosynthesis-associated nuclear genes (PhANGs) indispensable for chloroplast biogenesis. Salicylic acid (SA)-induced SIGMA FACTOR-BINDING PROTEIN 1 (SIB1), a transcription coregulator and positive regulator of cell death, interacts with GLK1 and GLK2 to reinforce the expression of PhANGs, leading to photoinhibition of photosystem II and singlet oxygen (1O2) burst in chloroplasts. 1O2 then contributes to SA-induced cell death via EXECUTER 1 (EX1; 1O2 sensor protein)-mediated retrograde signaling upon reaching a critical level. This earlier finding has initiated research on the potential role of GLK1/2 and EX1 in SA signaling. Consistent with this view, we reveal that LESION-SIMULATING DISEASE 1 (LSD1), a transcription coregulator and negative regulator of SA-primed cell death, interacts with GLK1/2 to repress their activities in Arabidopsis (Arabidopsis thaliana). Overexpression of LSD1 repressed GLK target genes, including PhANGs, whereas loss of LSD1 enhanced their expression. Remarkably, LSD1 overexpression inhibited chloroplast biogenesis, resembling the characteristic glk1glk2 double mutant phenotype. Subsequent chromatin immunoprecipitation coupled with expression analyses further revealed that LSD1 inhibits the DNA-binding activity of GLK1 toward its target promoters. SA-induced nuclear-targeted SIB1 proteins appeared to interrupt the LSD1-GLK interaction, and the subsequent SIB1-GLK interaction activated EX1-mediated 1O2 signaling, elucidating antagonistic modules SIB1 and LSD1 in the regulation of GLK activity. Taken together, we provide a working model that SIB1 and LSD1, mutually exclusive SA-signaling components, antagonistically regulate GLK1/2 to fine-tune the expression of PhANGs, thereby modulating 1O2 homeostasis and related stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Photosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins , Gene Expression Regulation, Plant , Photosynthesis/genetics , Sigma Factor , Transcription Factors/metabolism
9.
Plant Physiol ; 190(4): 2203-2216, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36106983

ABSTRACT

Homologous recombination-mediated gene targeting (GT) enables precise sequence knockin or sequence replacement, and thus is a powerful tool for heritable precision genome engineering. We recently established a clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9)-mediated approach for heritable GT in Arabidopsis (Arabidopsis thaliana), but its broad utility was not tested, and the underlying molecular mechanism was unclear. Here, we achieved precise GT at 14 out of 27 tested endogenous target loci using the sequential transformation approach and obtained vector-free GT plants by backcrossing. Thus, the sequential transformation GT method provides a broadly applicable technology for precise genome manipulation. We show that our approach generates heritable GT in the egg cell or early embryo of T1 Arabidopsis plants. Analysis of imprecise GT events suggested that single-stranded transfer DNA (T-DNA)/VirD2 complexes produced during the Agrobacterium (Agrobacterium tumefaciens) transformation process may serve as the donor templates for homologous recombination-mediated repair in the GT process. This study provides new insights into the molecular mechanisms of CRISPR/Cas9-mediated GT in Arabidopsis.


Subject(s)
Arabidopsis , Arabidopsis/genetics , CRISPR-Cas Systems/genetics , Gene Targeting/methods , Homologous Recombination/genetics , Agrobacterium tumefaciens/genetics , Gene Editing
10.
Plant Cell ; 32(10): 3240-3255, 2020 10.
Article in English | MEDLINE | ID: mdl-32796124

ABSTRACT

Chloroplasts mediate genetically controlled cell death via chloroplast-to-nucleus retrograde signaling. To decipher the mechanism, we examined chloroplast-linked lesion-mimic mutants of Arabidopsis (Arabidopsis thaliana) deficient in plastid division, thereby developing gigantic chloroplasts (GCs). These GC mutants, including crumpled leaf (crl), constitutively express immune-related genes and show light-dependent localized cell death (LCD), mirroring typical autoimmune responses. Our reverse genetic approach excludes any potential role of immune/stress hormones in triggering LCD. Instead, transcriptome and in silico analyses suggest that reactive electrophile species (RES) generated via oxidation of polyunsaturated fatty acids (PUFAs) or lipid peroxidation-driven signaling may induce LCD. Consistent with these results, the one of the suppressors of crl, dubbed spcrl4, contains a causative mutation in the nuclear gene encoding chloroplast-localized FATTY ACID DESATURASE5 (FAD5) that catalyzes the conversion of palmitic acid (16:0) to palmitoleic acid (16:1). The loss of FAD5 in the crl mutant might attenuate the levels of RES and/or lipid peroxidation due to the reduced levels of palmitic acid-driven PUFAs, which are prime targets of reactive oxygen species. The fact that fad5 also compromises the expression of immune-related genes and the development of LCD in other GC mutants substantiates the presence of an intrinsic retrograde signaling pathway, priming the autoimmune responses in a FAD5-dependent manner.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis/immunology , Chloroplasts/immunology , Fatty Acid Desaturases/immunology , Plant Immunity/physiology , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Death/genetics , Chloroplasts/genetics , Cyclopentanes/metabolism , Fatty Acid Desaturases/genetics , Gene Expression Regulation, Plant , Genes, Chloroplast , Mutation , Oxylipins/metabolism , Palmitic Acid/metabolism , Plant Leaves/genetics , Plants, Genetically Modified , Plastids/genetics , Salicylic Acid/metabolism
11.
Plant Cell ; 32(7): 2237-2250, 2020 07.
Article in English | MEDLINE | ID: mdl-32409317

ABSTRACT

The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Salicylic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Membrane/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Cells/metabolism , Plants, Genetically Modified , Salicylic Acid/pharmacology , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Plant Cell ; 31(1): 210-230, 2019 01.
Article in English | MEDLINE | ID: mdl-30606779

ABSTRACT

Chloroplast-to-nucleus retrograde signaling is essential for the coupled expression of photosynthesis-associated nuclear genes (PhANGs) and plastid genes (PhAPGs) to ensure the functional status of chloroplasts (Cp) in plants. Although various signaling components involved in the process have been identified in Arabidopsis (Arabidopsis thaliana), the biological relevance of such coordination remains an enigma. Here, we show that the uncoupled expression of PhANGs and PhAPGs contributes to the cell death in the lesion simulating disease1 (lsd1) mutant of Arabidopsis. A daylength-dependent increase of salicylic acid (SA) appears to rapidly up-regulate a gene encoding SIGMA FACTOR BINDING PROTEIN1 (SIB1), a transcriptional coregulator, in lsd1 before the onset of cell death. The dual targeting of SIB1 to the nucleus and the Cps leads to a simultaneous up-regulation of PhANGs and down-regulation of PhAPGs. Consequently, this disrupts the stoichiometry of photosynthetic proteins, especially in PSII, resulting in the generation of the highly reactive species singlet oxygen (1O2) in Cps. Accordingly, inactivation of the nuclear-encoded Cp protein EXECUTER1, a putative 1O2 sensor, significantly attenuates the lsd1-conferred cell death. Together, these results provide a pathway from the SA- to the 1O2-signaling pathway, which are intertwined via the uncoupled expression of PhANGs and PhAPGs, contributing to the lesion-mimicking cell death in lsd1.


Subject(s)
Arabidopsis/metabolism , Cell Nucleus/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Salicylic Acid/metabolism , Singlet Oxygen/metabolism
13.
Plant J ; 104(4): 964-978, 2020 11.
Article in English | MEDLINE | ID: mdl-32860438

ABSTRACT

The photosynthetic bacterial phycobiliprotein lyases, also called CpcT lyases, catalyze the biogenesis of phycobilisome, a light-harvesting antenna complex, through the covalent attachment of chromophores to the antenna proteins. The Arabidopsis CRUMPLED LEAF (CRL) protein is a homolog of the cyanobacterial CpcT lyase. Loss of CRL leads to multiple lesions, including localized foliar cell death, constitutive expression of stress-related nuclear genes, abnormal cell cycle, and impaired plastid division. Notwithstanding the apparent phenotypes, the function of CRL still remains elusive. To gain insight into the function of CRL, we examined whether CRL still retains the capacity to bind with the bacterial chromophore phycocyanobilin (PCB) and its plant analog phytochromobilin (PΦB). The revealed structure of the CpcT domain of CRL is comparable to that of the CpcT lyase, despite the low sequence identity. The subsequent in vitro biochemical assays found, as shown for the CpcT lyase, that PCB/PΦB binds to the CRL dimer. However, some mutant forms of CRL, substantially compromised in their bilin-binding ability, still restore the crl-induced multiple lesions. These results suggest that although CRL retains the bilin-binding pocket, it seems not functionally associated with the crl-induced multiple lesions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cyanobacteria/enzymology , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Bile Pigments/metabolism , Cell Division , Lyases/genetics , Mutation , Phenotype , Phycobilins/metabolism , Phycobiliproteins/metabolism , Phycobilisomes/metabolism , Phycocyanin/metabolism , Plastids/metabolism , Protein Binding
14.
Plant Physiol ; 183(1): 358-370, 2020 05.
Article in English | MEDLINE | ID: mdl-32139475

ABSTRACT

N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , N-Terminal Acetyltransferase B/metabolism , Salicylic Acid/pharmacology , Sigma Factor/metabolism , Acetylation , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Death/drug effects , Cell Death/genetics , N-Terminal Acetyltransferase B/genetics , Sigma Factor/genetics
15.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829988

ABSTRACT

Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.


Subject(s)
Chloroplasts/genetics , Metalloproteases/genetics , Stress, Physiological/genetics , Unfolded Protein Response/genetics , Endoplasmic Reticulum/genetics , Reactive Oxygen Species/metabolism , Temperature
16.
Plant Physiol ; 180(4): 2182-2197, 2019 08.
Article in English | MEDLINE | ID: mdl-31160506

ABSTRACT

Photodamage of the PSII reaction center (RC) is an inevitable process in an oxygen-rich environment. The damaged PSII RC proteins (Dam-PSII) undergo degradation via the thylakoid membrane-bound FtsH metalloprotease, followed by posttranslational assembly of PSII. While the effect of Dam-PSII on gene regulation is described for cyanobacteria, its role in land plants is largely unknown. In this study, we reveal an intriguing retrograde signaling pathway by using the Arabidopsis (Arabidopsis thaliana) yellow variegated2-9 mutant, which expresses a mutated FtsH2 (FtsH2G267D) metalloprotease, specifically impairing its substrate-unfolding activity. This lesion leads to the perturbation of PSII protein homeostasis (proteostasis) and the accumulation of Dam-PSII. Subsequently, this results in an up-regulation of salicylic acid (SA)-responsive genes, which is abrogated by inactivation of either an SA transporter in the chloroplast envelope membrane or extraplastidic SA signaling components as well as by removal of SA. These results suggest that the stress hormone SA, which is mainly synthesized via the chloroplast isochorismate pathway in response to the impaired PSII proteostasis, mediates the retrograde signaling. These findings reinforce the emerging view of chloroplast function toward plant stress responses and suggest SA as a potential plastid factor mediating retrograde signaling.


Subject(s)
Arabidopsis/metabolism , Photosystem II Protein Complex/metabolism , Salicylic Acid/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Mutation , Proteostasis/genetics , Proteostasis/physiology , Signal Transduction
17.
Plant Physiol ; 176(3): 2543-2556, 2018 03.
Article in English | MEDLINE | ID: mdl-29431629

ABSTRACT

Lipopolysaccharides (LPS) are major components of the outer membrane of gram-negative bacteria and are an important microbe-associated molecular pattern (MAMP) that triggers immune responses in plants and animals. A previous genetic screen in Arabidopsis (Arabidopsis thaliana) identified LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE), a B-type lectin S-domain receptor kinase, as a sensor of LPS. However, the LPS-activated LORE signaling pathway and associated immune responses remain largely unknown. In this study, we found that LPS trigger biphasic production of reactive oxygen species (ROS) in Arabidopsis. The first transient ROS burst was similar to that induced by another MAMP, flagellin, whereas the second long-lasting burst was induced only by LPS. The LPS-triggered second ROS burst was found to be conserved in a variety of plant species. Microscopic observation of the generation of ROS revealed that the LPS-triggered second ROS burst was largely associated with chloroplasts, and functional chloroplasts were indispensable for this response. The lipid A moiety, the most conserved portion of LPS, appears to be responsible for the second ROS burst. Surprisingly, the LPS- and lipid A-triggered second ROS burst was only partially dependent on LORE. Together, our findings provide insight on the LPS-triggered ROS production and the associated signaling pathway.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/drug effects , Lipopolysaccharides/pharmacology , Reactive Oxygen Species/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Flagellin/pharmacology , Gene Expression Regulation, Plant/drug effects , Lipid A/pharmacology , Mutation , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plants, Genetically Modified , Protein Kinases/genetics , Pseudomonas syringae/pathogenicity , Transcription Factors/genetics
18.
J Exp Bot ; 70(12): 3075-3088, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30989223

ABSTRACT

Cellular protein homeostasis (proteostasis) is maintained through the balance between de novo synthesis and proteolysis. The unfolded/misfolded protein response (UPR) that is triggered by stressed endoplasmic reticulum (ER) also plays an important role in proteostasis in both plants and animals. Although ER-triggered UPR has been extensively studied in plants, the molecular mechanisms underlying mitochondrial and chloroplastic UPRs are largely uncharacterized despite the fact that these organelles are sites of production of harmful reactive oxygen species (ROS), which damage proteins. In this study, we demonstrate that chloroplasts of the Arabidopsis yellow leaf variegation 2 (var2) mutant, which lacks the metalloprotease FtsH2, accumulate damaged chloroplast proteins and trigger a UPR-like response, namely the accumulation of a suite of chloroplast proteins involved in protein quality control (PQC). These PQC proteins include heat-shock proteins, chaperones, proteases, and ROS detoxifiers. Given that FtsH2 functions primarily in photosystem II proteostasis, the accumulation of PQC-related proteins may balance the FtsH2 deficiency. Moreover, the apparent up-regulation of the cognate transcripts indicates that the accumulation of PQC-related proteins in var2 is probably mediated by retrograde signaling, indicating the occurrence of a UPR-like response in var2.


Subject(s)
Arabidopsis/metabolism , Photosystem II Protein Complex/metabolism , Proteostasis , Unfolded Protein Response , Arabidopsis/genetics , Chloroplasts , Mutation
19.
Plant Cell Rep ; 38(7): 819-823, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30671650

ABSTRACT

Chloroplast-nucleus communication takes place via processes called anterograde and retrograde signaling pathways. Discovery of the retrograde signaling pathways from the chloroplasts to the nucleus also raised an intriguing proposition that chloroplasts may serve as environmental sensors since multitudes of environmental factors disturb chloroplastic homeostasis. Certain chloroplastic perturbations, mostly impairing transcription/translation, are coupled to the repression of photosynthesis-associated nuclear genes (PhANGs), thus finely coordinating photosynthetic and chloroplastic homeostasis. The unbiased forward genetic screen in Arabidopsis leads to the identification of six independent loci called GENOMES UNCOUPLED (GUN), whose inactivation was found to de-repress the expression of PhANGs under certain conditions promoting retrograde signaling. Of the six GUNs, five encode proteins associated with tetrapyrrole biosynthesis and one, namely GUN1, encodes a member of the pentatricopeptide repeat protein family. Despite the fact that GUN1 plays a role as a central signaling mediator for retrograde communication, the molecular details of GUN1 protein still remain to be elucidated. Here, we recapitulate our current understanding of the GUN1-mediated retrograde signaling pathway and propose a possible mode of action of GUN1 in the chloroplasts together with different aspects of GUN1 protein activity that deserve further investigation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Proc Natl Acad Sci U S A ; 113(26): E3792-800, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27303039

ABSTRACT

Formation of singlet oxygen ((1)O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, (1)O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of (1)O2 was first documented in the fluorescent (flu) mutant of Arabidopsis It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by (1)O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of (1)O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of (1)O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and (1)O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII.


Subject(s)
ATP-Dependent Proteases/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Membrane Proteins/metabolism , Photosystem II Protein Complex/metabolism , Singlet Oxygen/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Chlorophyll/metabolism , Seedlings/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL