Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(26): 18041-18047, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38895773

ABSTRACT

Nanostructured thermoelectric materials ideally reduce lattice thermal conductivity without harming the electrical properties. Thus, to truly improve the thermoelectric performance, the quality factor, which is proportional to the weighted mobility divided by the lattice thermal conductivity of the material, must be improved. Precipitates of In2Te3 form in the state-of-the-art Bi2Te3 with crystallographic alignment to the Bi2Te3 structure. Like epitaxy in films, this can be called endotaxy in solids. This natural epitaxy in a 3-dimensional solid is ideally situated to scatter phonons but produces minimal electronic scattering and, therefore, maintains high mobility. Here, we study the effects of In-alloying in Bi2Te3 at high In concentrations (about 4 at%), enough to produce the endotaxial microstructure. It is found that such concentrations of indium in Bi2Te3 significantly alter the electronic structure, reducing the effective mass and weighted mobility so significantly as to effectively destroy the thermoelectric properties even though the lattice thermal conductivity is successfully reduced.

2.
Materials (Basel) ; 17(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473477

ABSTRACT

The discoloration switching appearing in the initial and final growth stages of 4H-silicon carbide (4H-SiC) single crystals grown using the physical vapor transport (PVT) technique was investigated. This phenomenon was studied, investigating the correlation with linear-type micro-pipe defects on the surface of 4H-SiC single crystals. Based on the experimental results obtained using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and micro-Raman analysis, it was deduced that the orientation of the 4H-SiC c-axis causes an axial change that correlates with low levels of carbon. In addition, it was confirmed that the incorporation of additional elements and the concentrations of these doped impurity elements were the main causes of discoloration and changes in growth orientation. Overall, this work provides guidelines for evaluating the discoloration switching in 4H-SiC single crystals and contributes to a greater understanding of this phenomenon.

3.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399165

ABSTRACT

In this study, Al2O3-siloxane composite thermal pads were fabricated using a tape-casting technique, and the thermal conductivity effect of the Al2O3 nanoparticle powder synthesized using a flame fusion process on siloxane composite thermal pads was investigated. Furthermore, various case studies were implemented, wherein the synthesized Al2O3 nanoparticle powder was subjected to different surface treatments, including dehydration, decarbonization, and silylation, to obtain Al2O3-siloxane composite thermal pads with high thermal conductivity. The experimental results confirmed that the thermal conductivity of the Al2O3-siloxane composite pads improved when fabricated using surface-treated Al2O3 nanoparticle powder synthesized with an optimally spheroidized crystal structure compared to that produced using non-treated Al2O3 nanoparticle powder. Therefore, this study provides guidelines for fabricating Al2O3-siloxane composite thermal pads with high thermal conductivity in the field of thermal interface materials.

4.
RSC Adv ; 14(10): 7081-7087, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38414988

ABSTRACT

SnSe2 with its layered structure is a promising thermoelectric material with intrinsically low lattice thermal conductivity. However, its poor electronic transport properties have motivated extensive doping studies. Br doping effectively improves the power factor and converts the dimorphic SnSe2 to a fully hexagonal structure. To understand the mechanisms underlying the power factor improvement of Br-doped SnSe2, the electronic band parameters of Br-doped dimorphic and hexagonal SnSe2 should be evaluated separately. Using the single parabolic band model, we estimate the intrinsic mobility and effective mass of the Br-doped dimorphic and hexagonal SnSe2. While Br doping significantly improves the mobility of dimorphic SnSe2 (with the dominant hexagonal phase), it results in a combination of band convergence and band flattening in fully hexagonal SnSe2. Br-doped dimorphic SnSe2 is predicted to exhibit higher thermoelectric performance (zT ∼0.23 at 300 K) than Br-doped fully hexagonal SnSe2 (zT ∼0.19 at 300 K). Characterisation of the other, currently unidentified, structural phases of dimorphic SnSe2 will enable us to tailor the thermoelectric properties of Br-doped SnSe2.

5.
ACS Appl Mater Interfaces ; 16(30): 39356-39366, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38943223

ABSTRACT

Se-free n-type (Bi,Sb)2Te3 thermoelectric materials, outperforming traditional n-type Bi2(Te,Se)3, emerge as a compelling candidate for practical applications of recovering low-grade waste heat. A 100% improvement in the maximum ZT of n-type Bi1.7Sb0.3Te3 is demonstrated by using melt-spinning and excess Te-assisted transient liquid phase sintering (LPS). Te-rich sintering promotes the formation of intrinsic defects (TeBi), elevating the carrier concentration and enhancing the electrical conductivity. Melt-spinning with excess Te fine-tunes the electronic band, resulting in a high power-factor of 0.35 × 10-3 W·m-1 K-2 at 300 K. Rapid volume change during sintering induces the formation of dislocation networks, significantly suppressing the lattice thermal conductivity (0.4 W·m-1 K-1). The developed n-type legs achieve a high maximum ZT of 1.0 at 450 K resulting in a 70% improvement in the output power of the thermoelectric device (7.7 W at a temperature difference of 250 K). This work highlights the synergy between melt-spinning and transient LPS, advancing the tailored control of both electronic and thermal properties in thermoelectric technology.

6.
Int J Sex Health ; 34(4): 658-664, 2022.
Article in English | MEDLINE | ID: mdl-38596393

ABSTRACT

Objective: This study assesses the impact of the SARS-CoV-2 (COVID-19) pandemic on the first time Korean adolescents have sex. Methods: The study examines 2017-2021 data from an annual, cross-sectional survey. Results: There is a significant drop in the percentages of male adolescents initiating sexual intercourse in 2020 and noticeable rebounds in 2021. However, the sexual debut among female students shows no significant change. Conclusions: We suggest that strict social distancing measures in 2020 and loosening of them in 2021, different orientations toward having sex by gender, and a strong sexual double standard are responsible for these findings.

SELECTION OF CITATIONS
SEARCH DETAIL