Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Semin Neurol ; 44(3): 333-341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621706

ABSTRACT

Posttraumatic epilepsy (PTE) is a complication of traumatic brain injury that can increase morbidity, but predicting which patients may develop PTE remains a challenge. Much work has been done to identify a variety of risk factors and biomarkers, or a combination thereof, for patients at highest risk of PTE. However, several issues have hampered progress toward fully adapted PTE models. Such issues include the need for models that are well-validated, cost-effective, and account for competing outcomes like death. Additionally, while an accurate PTE prediction model can provide quantitative prognostic information, how such information is communicated to inform shared decision-making and treatment strategies requires consideration of an individual patient's clinical trajectory and unique values, especially given the current absence of direct anti-epileptogenic treatments. Future work exploring approaches integrating individualized communication of prediction model results are needed.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Humans , Prognosis , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/diagnosis , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis
2.
Neurocrit Care ; 41(1): 91-99, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38158481

ABSTRACT

BACKGROUND: The Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II randomized controlled trial used a tier-based management protocol based on brain tissue oxygen (PbtO2) and intracranial pressure (ICP) monitoring to reduce brain tissue hypoxia after severe traumatic brain injury. We performed a secondary analysis to explore the relationship between brain tissue hypoxia, blood pressure (BP), and interventions to improve cerebral perfusion pressure (CPP). We hypothesized that BP management below the lower limit of autoregulation would lead to cerebral hypoperfusion and brain tissue hypoxia that could be improved with hemodynamic augmentation. METHODS: Of the 119 patients enrolled in the Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II trial, 55 patients had simultaneous recordings of arterial BP, ICP, and PbtO2. Autoregulatory function was measured by interrogating changes in ICP and PbtO2 in response to fluctuations in CPP using time-correlation analysis. The resulting autoregulatory indices (pressure reactivity index and oxygen reactivity index) were used to identify the "optimal" CPP and limits of autoregulation for each patient. Autoregulatory function and percent time with CPP outside personalized limits of autoregulation were calculated before, during, and after all interventions directed to optimize CPP. RESULTS: Individualized limits of autoregulation were computed in 55 patients (mean age 38 years, mean monitoring time 92 h). We identified 35 episodes of brain tissue hypoxia (PbtO2 < 20 mm Hg) treated with CPP augmentation. Following each intervention, mean CPP increased from 73 ± 14 mm Hg to 79 ± 17 mm Hg (p = 0.15), and mean PbtO2 improved from 18.4 ± 5.6 mm Hg to 21.9 ± 5.6 mm Hg (p = 0.01), whereas autoregulatory function trended toward improvement (oxygen reactivity index 0.42 vs. 0.37, p = 0.14; pressure reactivity index 0.25 vs. 0.21, p = 0.2). Although optimal CPP and limits remained relatively unchanged, there was a significant decrease in the percent time with CPP below the lower limit of autoregulation in the 60 min after compared with before an intervention (11% vs. 23%, p = 0.05). CONCLUSIONS: Our analysis suggests that brain tissue hypoxia is associated with cerebral hypoperfusion characterized by increased time with CPP below the lower limit of autoregulation. Interventions to increase CPP appear to improve autoregulation. Further studies are needed to validate the importance of autoregulation as a modifiable variable with the potential to improve outcomes.


Subject(s)
Brain Injuries, Traumatic , Cerebrovascular Circulation , Homeostasis , Intracranial Pressure , Humans , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/metabolism , Homeostasis/physiology , Adult , Male , Female , Middle Aged , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Hypoxia, Brain/therapy , Hypoxia, Brain/physiopathology , Hypoxia, Brain/etiology , Young Adult , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL