Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547254

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Subject(s)
Coinfection , Interferon Type I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Cytokines/genetics , Cytokines/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Macrophages, Alveolar/metabolism , Interferon Type I/metabolism , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism
2.
BMC Med Genomics ; 16(1): 332, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114957

ABSTRACT

BACKGROUND: Several genome-wide association studies (GWAS) have been performed to identify variants related to chronic diseases. Somatic variants in cancer tissues are associated with cancer development and prognosis. Expression quantitative trait loci (eQTL) and methylation QTL (mQTL) analyses were performed on chronic disease-related variants in TCGA dataset. METHODS: MuTect2 calling variants for 33 cancers from TCGA and 296 GWAS variants provided by LocusZoom were used. At least one mutation was found in TCGA 22 cancers and LocusZoom 23 studies. Differentially expressed genes (DEGs) and differentially methylated regions (DMRs) from the three cancers (TCGA-COAD, TCGA-STAD, and TCGA-UCEC). Variants were mapped to the world map using population locations of the 1000 Genomes Project (1GP) populations. Decision tree analysis was performed on the discovered features and survival analysis was performed according to the cluster. RESULTS: Based on the DEGs and DMRs with clinical data, the decision tree model classified seven and three nodes in TCGA-COAD and TCGA-STAD, respectively. A total of 11 variants were commonly detected from TCGA and LocusZoom, and eight variants were selected from the 1GP variants, and the distribution patterns were visualized on the world map. CONCLUSIONS: Variants related to tumors and chronic diseases were selected, and their geological regional 1GP-based proportions are presented. The variant distribution patterns could provide clues for regional clinical trial designs and personalized medicine.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Neoplasms/genetics , Mutation , Quantitative Trait Loci , Chronic Disease
3.
Immune Netw ; 23(6): e43, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38188597

ABSTRACT

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster. Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.

SELECTION OF CITATIONS
SEARCH DETAIL