Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498271

ABSTRACT

Pancreatic cancer (PC) is difficult to detect in the early stages; thus, identifying specific and sensitive biomarkers for PC diagnosis is crucial, especially in the case of early-stage tumors. Circulating microRNAs are promising non-invasive biomarkers. Therefore, we aimed to identify non-invasive miRNA biomarkers and build a model for PC diagnosis. For the training model, blood serum samples from 63 PC patients and 63 control subjects were used. We selected 39 miRNA markers using a smoothly clipped absolute deviation-based penalized support vector machine and built a PC diagnosis model. From the double cross-validation, the average test AUC was 0.98. We validated the diagnosis model using independent samples from 25 PC patients and 81 patients with intrahepatic cholangiocarcinoma (ICC) and compared the results with those obtained from the diagnosis using carbohydrate antigen 19-9. For the markers miR-155-5p, miR-4284, miR-346, miR-7145-5p, miR-5100, miR-661, miR-22-3p, miR-4486, let-7b-5p, and miR-4703-5p, we conducted quantitative reverse transcription PCR using samples from 17 independent PC patients, 8 ICC patients, and 8 healthy individuals. Differential expression was observed in samples from PC patients. The diagnosis model based on the identified markers showed high sensitivity and specificity for PC detection and is potentially useful for early PC diagnosis.


Subject(s)
Biomarkers, Tumor/genetics , Cholangiocarcinoma/genetics , Circulating MicroRNA/genetics , Pancreatic Neoplasms/genetics , Aged , Algorithms , Biomarkers, Tumor/blood , Biomarkers, Tumor/standards , Cholangiocarcinoma/blood , Circulating MicroRNA/blood , Circulating MicroRNA/standards , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/blood , Sensitivity and Specificity
2.
Nanotechnology ; 28(22): 225703, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28448276

ABSTRACT

We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

3.
NPJ Precis Oncol ; 8(1): 170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090283

ABSTRACT

Discovery and verification of diagnostic or therapeutic biomarkers for biliary tract cancer (BTC) is challenging owing to the low prevalence of the disease. Here, we identified and investigated the clinical impact of a fusion gene, Pumilio1-tumor necrosis factor receptor-associated factor 3 (PUM1-TRAF3), caused by 1;14 chromosomal translocation in BTC. PUM1-TRAF3 was initially identified in the RNA-sequencing of five BTC surgical tissues and confirmed by fluorescence in situ hybridization. Expression of the fusion gene was validated in an expanded cohort (5/55, 9.1%). Establishment and molecular assessment of PUM1-TRAF3 expressing BTC cells revealed that PUM1-TRAF3 activates non-canonical NF-κB signaling via NF-κB-inducing kinase (NIK). Abnormal TRAF3 activity, driven by competitive binding of PUM1-TRAF3 and TRAF3 to NIK, led to NIK rescue followed by P52/RelB nuclear translocation, all of which were reverted by an NIK inhibitor. The elevated expression of NIK and activated NF-κB signaling was observed in the PUM1-TRAF3-expressing regions of patient tissues. Expression of the PUM1-TRAF3 fusion was significantly correlated with strong NIK expression, which is associated with a poorer prognosis for patients with BTC. Overall, our study identifies a new fusion gene, PUM1-TRAF3, that activates NIK and non-canonical NF-κB signaling, which may be beneficial for developing precise treatment strategies for BTC.

4.
Sci Rep ; 13(1): 14469, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660094

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder of childhood. Although it requires timely detection and intervention, existing continuous performance tests (CPTs) have limited efficacy. Research suggests that eye movement could offer important diagnostic information for ADHD. This study aimed to compare the performance of eye-tracking with that of CPTs, both alone and in combination, and to evaluate the effect of medication on eye movement and CPT outcomes. We recruited participants into an ADHD group and a healthy control group between July 2021 and March 2022 from among children aged 6-10 years (n = 30 per group). The integration of eye-tracking with CPTs produced higher values for the area under the receiver operating characteristic (AUC, 0.889) compared with using CPTs only (AUC, 0.769) for identifying patients with ADHD. The use of eye-tracking alone showed higher performance compare with the use of CPTs alone (AUC of EYE: 0.856, AUC of CPT: 0.769, p = 0.029). Follow-up analysis revealed that most eye-tracking and CPT indicators improved significantly after taking an ADHD medication. The use of eye movement scales could be used to differentiate children with ADHD, with the possibility that integrating eye movement scales and CPTs could improve diagnostic precision.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Neurodevelopmental Disorders , Humans , Child , Eye-Tracking Technology , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/drug therapy , Eye Movements , Health Status
5.
Article in English | MEDLINE | ID: mdl-36497729

ABSTRACT

This cross-sectional, observational study aimed to integrate the analyses of relationships of physical activity, depression, and sleep with cognitive function in community-dwelling older adults using a single model. To this end, physical activity, sleep, depression, and cognitive function in 864 community-dwelling older adults from the Suwon Geriatric Mental Health Center were assessed using the International Physical Activity Questionnaire, Montgomery-Asberg Depression Rating Scale, Pittsburgh Sleep Quality Index, and Mini-Mental State Examination for Dementia Screening, respectively. Their sociodemographic characteristics were also recorded. After adjusting for confounders, multiple linear regression analysis was performed to investigate the effects of physical activity, sleep, and depression on cognitive function. Models 4, 5, 7, and 14 of PROCESS were applied to verify the mediating and moderating effects of all variables. Physical activity had a direct effect on cognitive function (effect = 0.97, p < 0.01) and indirect effect (effect = 0.36; confidence interval: 0.18, 0.57) through depression. Moreover, mediated moderation effects of sleep were confirmed in the pathways where physical activity affects cognitive function through depression (F-coeff = 13.37, p < 0.001). Furthermore, these relationships differed with age. Thus, the associations among physical activity, depression, and sleep are important in interventions for the cognitive function of community-dwelling older adults. Such interventions should focus on different factors depending on age.


Subject(s)
Cognitive Dysfunction , Independent Living , Humans , Aged , Cross-Sectional Studies , Sleep , Cognition , Exercise , Depression/epidemiology , Cognitive Dysfunction/epidemiology
6.
Sci Rep ; 7(1): 10921, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883618

ABSTRACT

Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with other chemotherapeutic agents including gemcitabine, 5-fluorouracil (5-FU), cisplatin, oxaliplatin, or gemcitabine plus cisplatin further decreased cholangiocarcinoma cell viability, with a combination index < 1 that indicated synergistic action. CG200745 also enhanced the sensitivity of gemcitabine-resistant cells to gemcitabine and 5-FU, thereby decreasing cell viability and inducing apoptosis. This was accompanied by downregulation of YAP, TEAD4, TGF-ß2, SMAD3, NOTCH3, HES5, Axl, and Gas6 and upregulation of the miRNAs miR-22-3p, miR-22-5p, miR-194-5p, miR-194-3p, miR-194-5p, miR-210-3p, and miR-509-3p. The Ingenuity Pathway Analysis revealed that CG200745 mainly targets the Hippo signalling pathway by inducing miR-509-3p expression. Thus, CG200745 inhibits cholangiocarcinoma growth in vitro and in vivo, and acts synergistically when administered in combination with standard chemotherapeutic agents, enabling dose reduction. CG200745 is therefore expected to improve the outcome of cholangiocarcinoma patients who exhibit resistance to conventional therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Bile Duct Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , MicroRNAs/metabolism , Naphthalenes/pharmacology , Protein Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Heterografts , Hippo Signaling Pathway , Histone Deacetylase Inhibitors/administration & dosage , Humans , Hydroxamic Acids/administration & dosage , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Naphthalenes/administration & dosage , Neoplasm Transplantation , Signal Transduction/drug effects , Treatment Outcome
7.
Biosens Bioelectron ; 85: 422-428, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27203463

ABSTRACT

An immunochromatographic assay (ICA) strip is one of the most widely used platforms in the field of point-of-care biosensors for the detection of various analytes in a simple, fast, and inexpensive manner. Currently, several approaches for sequential reactions in ICA platforms have improved their usability, sensitivity, and versatility. In this study, a new, simple, and low-cost approach using automatic sequential-reaction ICA strip is described. The automatic switching of a reagent pad from separation to attachment to the test membrane was achieved using a water-swellable polymer. The reagent pad was dried with an enzyme substrate for signal generation or with signal-enhancing materials. The strip design and system operation were confirmed by the characterization of the raw materials and flow analysis. We demonstrated the operation of the proposed sensor by using various chemical reaction-based assays, including metal-ion amplification, enzyme-colorimetric reaction, and enzyme-catalyzed chemiluminescence. Furthermore, by employing C-reactive protein as a model, we successfully demonstrated that the new water-swellable polymer-based ICA sensor can be utilized to detect biologically relevant analytes in human serum.


Subject(s)
C-Reactive Protein/analysis , Chromatography, Affinity/instrumentation , Point-of-Care Systems , Polymers/chemistry , Biosensing Techniques/instrumentation , Equipment Design , Humans , Luminescence , Luminescent Measurements/instrumentation , Reagent Strips/analysis , Solubility , Water/chemistry
8.
J Nanosci Nanotechnol ; 14(10): 8005-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942911

ABSTRACT

In this study, TiO2 nanofibers with a high aspect ratio and a large specific surface area were synthesized using the electrospinning technique, and the effect of calcination temperature on their crystal structure, diameter, specific surface area and photocatalytic activity was systematically investigated. The electrospun, as-prepared PVP/TTIP nanofibers were several tens of micrometers in length with a diameter of 74 nm. TiO2 nanofibers with an average diameter of 50 nm were prepared after calcination at various temperatures. The calcination temperature significantly influenced the photocatalytic and material properties of TiO2 including grain size and specific surface area. When compared to other nanostructured TiO2 materials, such as commercial TiO2 nanoparticles (P25, Degussa), the TiO2 nanofibers exhibited greater photocatalytic activity for the degradation of acetaldehyde and ammonia.

SELECTION OF CITATIONS
SEARCH DETAIL