Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831106

ABSTRACT

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Tumor Microenvironment , Animals , Humans , Immunotherapy, Adoptive/methods , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Mice , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , Signal Transduction , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Mice, Knockout
2.
Nanotechnology ; 35(27)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38522102

ABSTRACT

To obtain high-quality SiNxfilms applicable to an extensive range of processes, such as gate spacers in fin field-effect transistors (FinFETs), the self-aligned quadruple patterning process, etc, a study of plasma with higher plasma density and lower plasma damage is crucial in addition to study on novel precursors for SiNxplasma-enhanced atomic layer deposition (PEALD) processes. In this study, a novel magnetized PEALD process was developed for depositing high-quality SiNxfilms using di(isopropylamino)silane (DIPAS) and magnetized N2plasma at a low substrate temperature of 200 °C. The properties of the deposited SiNxfilms were analyzed and compared with those obtained by the PEALD process using a non-magnetized N2plasma source under the same conditions. The PEALD SiNxfilm, produced using an external magnetic field (ranging from 0 to 100 G) during the plasma exposure step, exhibited a higher growth rate (∼1 Å/cycle) due to the increased plasma density. Additionally, it showed lower surface roughness, higher film density, and enhanced wet etch resistance compared to films deposited using the PEALD process with non-magnetized plasmas. This improvement can be attributed to the higher ion flux and lower ion energy of the magnetized plasma. The electrical characteristics, such as interface trap density and breakdown voltage, were also enhanced when the magnetized plasma was used for the PEALD process. Furthermore, when SiNxfilms were deposited on high-aspect-ratio (30:1) trench patterns using the magnetized PEALD process, an improved step coverage of over 98% was achieved, in contrast to the conformality of SiNxdeposited using non-magnetized plasma. This enhancement is possibly a result of deeper radical penetration enabled by the magnetized plasma.

3.
J Nat Prod ; 87(1): 58-67, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38159296

ABSTRACT

Phytochemical investigation of the MeOH extract of Pinus eldarica needles led to the isolation and identification of a new clerodane-type diterpene, pinuseldarone (1), along with a known flavonoid, 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (2), through HPLC purification. The structure of the new compound 1 was elucidated using spectroscopic methods, including 1D and 2D NMR, as well as HRESIMS. Its absolute configuration was established through NOESY analysis and computational methods, including electronic circular dichroism (ECD) calculations and gauge-including atomic orbital NMR chemical shift calculations, followed by DP4+ probability analysis. The metabolic implications of the isolated compounds were assessed using a cultured brown adipocyte model derived from murine brown adipose tissue. It was observed that treatment with dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (2) downregulates the adipogenic marker C/EBPδ and fatty acid transporter CD36, resulting in a significant reduction in lipid accumulation during brown adipocyte differentiation. However, pinuseldarone (1) treatment did not affect brown adipocyte differentiation. Interestingly, pretreatment with pinuseldarone (1) potentiated the pharmacological stimulation of brown adipocytes, seemingly achieved by sensitizing their response to ß3-adrenoreceptor signaling. Therefore, our findings indicate that phytochemicals derived from P. eldarica needles could potentially serve as valuable compounds for adjusting the metabolic activity of brown adipose tissue, a vital component in maintaining whole-body metabolic homeostasis.


Subject(s)
Diterpenes, Clerodane , Pinus , Animals , Mice , Adipogenesis , Adipocytes, Brown/metabolism , Thermogenesis
4.
J Nat Prod ; 87(7): 1881-1887, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38950087

ABSTRACT

A family of pyrazinone metabolites (1-11) were characterized from Staphylococcus xylosus ATCC 29971. Six of them were hydroxylated or methoxylated, which were proposed to be produced by the rare noncatalytic oxa-Michael addition reaction with a water or methanol molecule. It was confirmed that isopropyl alcohol can also be the Michael donor of the reaction. 1-7 and the synthetic precursor 2a showed significant inhibition of breast cancer cell migration.


Subject(s)
Pyrazines , Staphylococcus , Humans , Cell Movement/drug effects , Molecular Structure , Pyrazines/chemistry , Pyrazines/pharmacology , Staphylococcus/drug effects
5.
Environ Res ; 260: 119664, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39048069

ABSTRACT

The preparation of nitrogen-doped TiO2 (i.e., N-TiO2) catalysts is a highly effective option to improve the photocatalytic activity of TiO2. Nonetheless, relatively little is known about the effects of dopant precursors selected for their preparation with regard to the photocatalytic efficacy. In this study, three types of dopants are selected and used as N sources (urea (U), melamine (M), and aqueous ammonia (A)) for N-TiO2 samples with the name codes of NTU, NTM, and NTA, respectively. The photocatalytic efficacy of these N-TiO2 samples is examined against toluene in a packed bed flow reactor. Under optimal conditions (e.g., relative humidity (RH) = 20% and gas hourly space velocity (GHSV) = 1698 h-1), the superiority of NTA is evident over others with a quantum efficiency (QE) of 7.03 × 10-4 molecules photon-1, a space time yield (STY) of 1.38 × 10-4 molecules photon-1 mg-1, and a specific clean air delivery rate (SCADR) of 1148.8 L g-1 h-1. The analysis based on in-situ diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography-mass spectrometry confirms the formation of several intermediates such as benzyl alcohol, benzaldehyde, benzoic acid, and alkane species through ring opening reactions. In addition, the prepared NTA photocatalyst exhibits the highest toluene photocatalytic degradation efficiency among all TiO2-based catalysts surveyed to date. Overall, this study offers as a valuable guideline for the development of advanced TiO2 catalytic systems (such as N-TiO2) for the treatment of aromatic hydrocarbons in indoor air.

6.
Environ Res ; 247: 118256, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266900

ABSTRACT

Water pollution by dyes and pesticides poses significant threats to our ecosystem. In this research, a visible-light ternary composite photocatalytic system was fabricated using graphene oxide (GO) by reducing with N2H4, modifying with KOH, and decorating with Ag/V2O5. The fabricated photocatalysts were characterized through FTIR, SEM, XRD, BET, PL, EDX, ESR, UV-vis spectroscopy, TGA, ESI-MS, and Raman spectroscopy. The point zero charge of the reduced and modified GO (RMGO/Ag/V2O5) was measured to be 6.7 by the pH drift method. This ternary composite was able to achieve complete removal of methyl orange (MO) and chlorpyrifos (CP) in solutions in 80 min under the optimum operation conditions (e.g., in terms of pollutant/catalyst concentrations, pH effects, and contact time). The role of active species responsible for photocatalytic activity was confirmed by scavenger analysis and ESR investigations. The potential mechanism for photocatalytic activity was studied through a fragmentation process carried out by MS analysis. Through nonlinear fitting of the experimental data, MO and CP exhibited the best fit results with the pseudo 1st-order kinetics (quantum yields of 1.07 × 10-3 and 2.16 × 10-3 molecules photon-1 and space-time yields of 1.53 × 10-5 and 2.7 × 10-5 molecules photon-1 mg-1, respectively). The structure of the nanomaterials remained mostly intact to support increased stability and reusability of the prepared photocatalysts even after 10 successive regeneration cycles.


Subject(s)
Azo Compounds , Chlorpyrifos , Graphite , Pesticides , Coloring Agents/chemistry , Ecosystem , Light
7.
Environ Res ; 256: 119269, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38815720

ABSTRACT

Although bag sampling is a common quantification tool for volatile organic compounds (VOCs), it can serve as a major source of experimental bias, when storing even over a short duration (<24 h). To learn more about the reliability of the bag sampling method, the temporal stability of 27 VOCs (classified into five groups (i.e., aldehydes, nonpolar aromatic hydrocarbons, aliphatic carboxylic acids, phenol and methylphenols, and miscellaneous odorants) is assessed using poly-ester aluminum (PEA) bags at five intervals over a day (0.17, 1, 2, 6, and 24 h). In terms of reproducibility (e.g., relative standard error [RSEt, %]), nonpolar aromatic hydrocarbons (BTXS) exhibit the highest consistency (e.g., average RSE <1.55%). Considerable loss of VOCs is observed in the preparation of gaseous standards from a liquid phase standard when assessed by gas/liquid (G/L) ratio. Further, VOCs with lower molecular weights (e.g., propionaldehyde: 77%-94.4%) and branched molecular structures (e.g., isovaleraldehyde: 67.2%-78.9%) tend to have high G/L ratio (e.g., relative to valeraldehyde: 55.1%-66%). The overall relative recovery (RR; %) values of VOCs indicate an exponential decrease over 24 h. BTXS maintain fairly good RR values (above 94.3% at all intervals), possibly due to the nonpolar structure with uniform distribution of π electrons. In contrast, indole and skatole show the least preservation after 24 h (e.g., RR4 values of 10.9% and 24.6%, respectively) due to their highly reactive characteristics. The storability of VOCs appears to be affected by a number of variables (e.g., molecular weight, presence of ethyl branch, and time: e.g., R2 > 0.9). The results of this study offer valuable guidelines for the accurate quantification of VOC levels in air.


Subject(s)
Environmental Monitoring , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Reproducibility of Results , Time Factors
8.
Environ Res ; 255: 119186, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38777297

ABSTRACT

The removal of formaldehyde (FA) is vital for indoor air quality management in light of its carcinogenic propensity and adverse environmental impact. A series of copper manganite spinel structures (e.g., CuMn2O4) are prepared using the sol-gel combustion method and treated with reduction or oxidation pretreatment at 300 °C condition. Accordingly, CuMn2O4-O ("O" suffix for oxidation pre-treatment in air) is identified as the best performer to achieve 100% conversion (XFA) of FA (50 ppm) at 90 °C; its performance, if assessed in terms of reaction kinetic rate (r) at XFA = 10%, is 5.02E-03 mmol g-1 h-1. The FA removal performance increases systematically with decreases in flow rate, FA concentration, and relative humidity (RH) or with increases in bed mass. The reaction pathways and intermediates of FA catalytic oxidation on CuMn2O4-A are studied with density functional theory simulations, temperature-programmed characterization experiments, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The synergistic combination of large quantities of adsorbed oxygen (OA) species and oxidized metal species (e.g., Cu2+) contribute to the enhanced catalytic performance of CuMn2O4-O to oxidize FA into CO2 with the reaction intermediates of H2CO2 (DOM), HCOO-, and CO. The present study is expected to provide valuable insights into the thermocatalytic oxidation of FA over spinel CuMn2O4 materials and their catalytic performances in relation to the key process variables.


Subject(s)
Copper , Formaldehyde , Formaldehyde/chemistry , Copper/chemistry , Catalysis , Air Pollutants/chemistry , Air Pollutants/analysis , Oxidation-Reduction , Temperature , Cold Temperature , Aluminum Oxide , Magnesium Oxide
9.
BMC Public Health ; 24(1): 1656, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902653

ABSTRACT

INTRODUCTION: Although the risk of CVD is increased in cancer survivors, few studies have investigated the CVD risk in survivors of gastrointestinal (GI) cancer. Therefore, we evaluated the CVD risk using the 10-year atherosclerotic cardiovascular disease (ASCVD) risk score for GI cancer survivors and associated physical activity factors. METHODS: Using the 2014-2019 Korean National Health and Nutrition Examination Surveys, data were collected for 262 GI cancer survivors and 1,310 cancer-free controls matched at a 1:5 ratio based on age and sex. The International Physical Activity Questionnaire Short-Form was used to assess physical activity, and the Euro QoL Questionnaire 5-Dimensional Classification (EQ-5D) was used to assess the health-related quality of life. RESULTS: A multiple logistic regression analysis demonstrated a lower risk of ASCVD in GI cancer survivors than in controls (adjusted odds ratio [aOR] = 0.73, 95% confidence interval [CI] = 0.55-0.97). Moreover, the risk of having a high ASCVD score was significantly lower in individuals who performed sufficient aerobic physical activity (aOR = 0.59, 95% CI = 0.47-0.75) and those with an EQ-5D score 1 or 2 (aOR = 0.36, 95% CI = 0.20-0.65 and aOR = 0.31, 95% CI = 0.16-0.58, respectively). CONCLUSIONS: This population-based study demonstrated that engaging in sufficient physical activity can reduce the ASCVD risk among GI cancer survivors.


Subject(s)
Cancer Survivors , Cardiovascular Diseases , Exercise , Gastrointestinal Neoplasms , Nutrition Surveys , Humans , Male , Female , Cancer Survivors/statistics & numerical data , Cancer Survivors/psychology , Middle Aged , Gastrointestinal Neoplasms/psychology , Republic of Korea/epidemiology , Cardiovascular Diseases/epidemiology , Aged , Adult , Quality of Life , Risk Factors , Case-Control Studies , Risk Assessment
10.
Mikrochim Acta ; 191(6): 324, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730197

ABSTRACT

A robust "on-off" fluorescent aptasensor was developed using nanohybrids of molybdenum sulfide (MoS2) quantum dot (QD)-doped zinc metal-organic frameworks (Zn-MOF) for selective and sensitive detection of cadmium ions (Cd2+) in water. This nanohybrid (MoS2@Zn-MOF), synthesized via "bottle around the ship" methodology, exhibited a high-intensity fluorescence emission centered at 430 nm (λEm) (blue) on excitation at 320 nm (λEx). Further, the conjugation of this fluorophore to phosphate-modified cadmium aptamer (Cd-2-2) was achieved through carbodiimide reaction. The hybridization of prepared sensing probe (MoS2@Zn-MOF/Cd-2-2 aptamer) was done with dabcyl-conjugated complementary DNA (cDNA), acting as energy donor-acceptor pair in the fluorescence resonance energy transfer (FRET) system. This hybridization causes the fluorescence quenching of the nanohybrid. In the presence of Cd2+, the aptamer from the fabricated nano-biosensing probe binds to these ions, resulting in release of dabcyl-cDNA oligomer. This release of dabcyl-cDNA oligomer from the sensing probes restores the fluorescence of the nanohybrid. Under optimized conditions (sensing probe/dabcyl-cDNA ratio 1/7, pH 7.4, and temp 28 °C), the sensing probe showed a fast response time of 1 min. The fluorescence intensity of the nanohybrid can be utilized to determine the concentration of Cd2+. The proposed aptasensor achieved highly sensitive detection of Cd2+ with a limit of detection (LOD) of 0.24 ppb over the range of 1 × 10-9 to 1 × 10-4 M along with minimal effects of interferences (e.g., Hg2+, Pb2+, and Zn2+) and good reproducibility. The designed aptasensor based on MoS2@Zn-MOF nanofluorophore offers a highly sensitive and selective approach for rapid screening of metal ions in aqueous environments.

11.
Aesthetic Plast Surg ; 48(7): 1271-1275, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326500

ABSTRACT

Bimaxillary surgery is a painful invasive procedure in plastic surgery. Pain control is typically achieved using intravenous analgesics. We aimed to investigate the efficacy of a novel temperature-responsive hydrogel, PF72, mixed with ropivacaine, as a local pain management solution when applied directly to the surgical site following orthognathic surgery. The study was conducted from October 2022 to July 2023 and included a cohort of 40 candidates for orthognathic surgery, encompassing LeFort I maxillary ostectomy and sagittal split ramus osteotomy. The participants were divided into an Injection group (n = 20), where PF72 was administered at the surgical site before the orthognathic surgery, and a Control group (n = 20), which relied solely on intravenous analgesics. Pain was evaluated at 3, 6, 24, 48, and 72 h after surgery using a numerical rating scale (NRS). The mean NRS scores at 24 h were 6.35 and 4 for the Control and Injection groups, respectively. The mean NRS scores at 72 h were 3.4 and 2.55 for the Control and Injection groups, respectively. Patients who received PF72 experienced less pain than those who received intravenous analgesics. These findings underscore the potential of PF72 as an effective alternative for enhancing pain management in patients undergoing orthognathic surgery.Level of Evidence III Therapeutic study. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Hydrogels , Pain Measurement , Pain, Postoperative , Humans , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Pain, Postoperative/diagnosis , Female , Adult , Male , Retrospective Studies , Young Adult , Ropivacaine/administration & dosage , Orthognathic Surgical Procedures/adverse effects , Orthognathic Surgical Procedures/methods , Pain Management/methods , Temperature , Osteotomy, Sagittal Split Ramus/methods , Osteotomy, Sagittal Split Ramus/adverse effects , Osteotomy, Le Fort/methods , Osteotomy, Le Fort/adverse effects , Treatment Outcome , Anesthetics, Local/administration & dosage
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673777

ABSTRACT

Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.


Subject(s)
Phylogeny , Streptomyces , Streptomyces/metabolism , Streptomyces/genetics , RNA, Ribosomal, 16S/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Soil Microbiology , Tandem Mass Spectrometry , Metabolomics/methods , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology
13.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279268

ABSTRACT

Nymphoides peltata has been used as a medicinal herb in traditional medicines to treat strangury, polyuria, and swelling. The phytochemical investigation of the MeOH extract of N. peltata roots led to the isolation of three iridoid glycosides and three coumarin glycoside derivatives, which were characterized as menthiafolin (1), threoninosecologanin (2), callicoside C (3), and scopolin (4), as well as two undescribed peltatamarins A (5) and B (6). The chemical structures of the undescribed compounds were determined by analyzing their 1 dimensional (D) and 2D nuclear magnetic resonance (NMR) spectra and using high-resolution (HR)-electrospray ionization mass spectroscopy (ESI-MS), along with the chemical reaction of acid hydrolysis. The wound healing activities of the isolated compounds 1-6 were evaluated using a HaCaT cell scratch test. Among the isolates, scopolin (4) and peltatamarin A (5) promoted HaCaT cell migration over scratch wounds, and compound 5 was the most effective. Furthermore, compound 5 significantly promoted cell migration without adversely affecting cell proliferation, even when treated at a high dose (100 µM). Our results demonstrate that peltatamarin A (5), isolated from N. peltata roots, has the potential for wound healing effects.


Subject(s)
Cardiac Glycosides , Magnoliopsida , Plants, Medicinal , Glycosides/pharmacology , Glycosides/chemistry , Iridoid Glycosides/chemistry , Wound Healing , Plant Extracts/pharmacology , Plant Extracts/chemistry , Coumarins/pharmacology
14.
Compr Rev Food Sci Food Saf ; 23(3): e13370, 2024 May.
Article in English | MEDLINE | ID: mdl-38783570

ABSTRACT

Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.


Subject(s)
Caseins , Caseins/chemistry , Peptide Fragments/analysis , Peptide Fragments/chemistry , Humans , Phenylketonurias
15.
Sci Total Environ ; 927: 171998, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38537821

ABSTRACT

The adsorption capture of ambient volatile organic compounds (VOCs) is of practical importance for air quality management. Herein, unique anti-competitive adsorption behavior of benzene on a hydrophilic activated carbon (Procarb-900 (P900)) is evidenced in the presence of competing components (e.g., formaldehyde (FA) and/or moisture). Contrary to general expectations, the adsorption capacity of 10 Pa benzene (QB) onto P900 (30 mg) at the 99 % breakthrough level improves from 144.8 to 187 mg g-1 as the relative humidity (RH) increases from 0 to 25 %. Such pattern is maintained at 183.9 mg g-1 even at the relatively high RH of 50 %. Furthermore, QB exhibits a remarkable increase of 56.1 % (to 226.0 mg g-1) in the binary phase (100 ppm benzene plus 50 ppm FA) relative to its single phase (144.8 mg g-1). The kinetic studies confirm the occurrence of anti-competitive adsorption of benzene under humid conditions with the unusual decrease in rate constants at the elevated RHs (i.e., 25 and 50 %). The thermodynamic studies suggest the exothermic nature of benzene adsorption onto P900. The hydrophilicity of P900's outer surface promotes the preferential adsorption of polar FA and water vapor over non-polar benzene, which deforms the activated carbon texture and lowers the pore size distribution (PSD). The narrow PSD enhances benzene uptake in the complex systems due to the confinement effect. Overall, this study offers insights into the unique anti-competitive adsorption of non-polar VOCs (e.g., benzene) on hydrophilic microporous adsorbents in the presence of potential interferences such as polar water vapor and FA. These findings offer a guideline for the practical implementation of adsorption techniques for gaseous VOCs in humid conditions.

16.
Chemosphere ; 361: 142550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857633

ABSTRACT

Materials Institute Lavoisier (MIL) metal organic frameworks (MOFs) are known for their potential to adsorb gaseous organic pollutants. This study explores the synergistic effects between the selection of central metals (e.g., titanium, iron, and aluminum) and the incorporation of -NH2 groups in terms of adsorption efficiency against gaseous formaldehyde (FA). A group of the pristine MIL MOFs is synthesized using three different metals (i.e., titanium, iron, and aluminum) and terephthalic acid along with their NH2 derivatives using 2-aminoterephthalic acid. Among the pristine forms, MIL-125(Ti) achieves the highest FA adsorption capacity (Q) of 26.96 mg g-1 and a partition coefficient (PC) of 0.0898 mol kg-1 Pa-1. Further, amination significantly improves the FA adsorption potential of NH2-MIL-125(Ti) with a Q value of 91.22 mg g-1 (PC = 0.3038 mol kg-1 Pa-1). In situ diffuse reflectance infrared Fourier-transform spectroscopy reveals that the FA adsorption of plain MILs should be governed primarily by physisorption. In contrast, FA adsorption of NH2-MILs appears to be regulated by both physisorption and chemisorption, while the latter being affected mainly through FA-NH2 interactions (Schiff base reactions). These findings provide valuable insights into the utility of aminated MIL sorbents, possibly toward the efficient management of indoor air quality.


Subject(s)
Air Pollutants , Formaldehyde , Metal-Organic Frameworks , Formaldehyde/chemistry , Adsorption , Metal-Organic Frameworks/chemistry , Air Pollutants/chemistry , Titanium/chemistry , Aluminum/chemistry , Spectroscopy, Fourier Transform Infrared , Iron/chemistry
17.
Int J Biol Macromol ; 259(Pt 2): 129284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211928

ABSTRACT

Exposure to severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) prompts humoral immune responses in the human body. As the auxiliary diagnosis of a current infection, the existence of viral proteins can be checked from specific antibodies (Abs) induced by immunogenic viral proteins. For people with a weakened immune system, Ab treatment can help neutralize viral antigens to resist and treat the disease. On the other hand, highly immunogenic viral proteins can serve as effective markers for detecting prior infections. Additionally, the identification of viral particles or the presence of antibodies may help establish an immune defense against the virus. These immunogenic proteins rather than SARS-CoV-2 can be given to uninfected people as a vaccination to improve their coping ability against COVID-19 through the generation of memory plasma cells. In this work, we review immunogenic and immune-response proteins derived from SARS-CoV-2 with regard to their classification, origin, and diverse applications (e.g., prevention (vaccine development), diagnostic testing, and treatment (via neutralizing Abs)). Finally, advanced immunization strategies against COVID-19 are discussed along with the contemporary circumstances and future challenges.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing/therapeutic use , Vaccination , Antigens, Viral , COVID-19 Testing
18.
World J Clin Cases ; 12(9): 1677-1684, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38576743

ABSTRACT

BACKGROUND: Pancreatic ductal leaks complicated by endoscopic ultrasonography-guided tissue sampling (EUS-TS) can manifest as acute pancreatitis. CASE SUMMARY: A 63-year-old man presented with persistent abdominal pain and weight loss. Diagnosis: Laboratory findings revealed elevated carbohydrate antigen 19-9 (5920 U/mL) and carcinoembryonic antigen (23.7 ng/mL) levels. Magnetic resonance imaging of the pancreas revealed an approximately 3 cm ill-defined space-occupying lesion in the inferior aspect of the head, with severe encasement of the superior mesenteric artery. Pancreatic ductal adenocarcinoma was confirmed after pathological examination of specimens obtained by EUS-TS using the fanning method. Interventions and outcomes: The following day, the patient experienced severe abdominal pain with high amylase (265 U/L) and lipase (1173 U/L) levels. Computed tomography of the abdomen revealed edematous wall thickening of the second portion of the duodenum with adjacent fluid collections and a suspicious leak from either the distal common bile duct or the main pancreatic duct in the head. Endoscopic retrograde cholangiopancreatography revealed dye leakage in the head of the main pancreatic duct. Therefore, a 5F 7 cm linear plastic stent was deployed into the pancreatic duct to divert the pancreatic juice. The patient's abdominal pain improved immediately after pancreatic stent insertion, and amylase and lipase levels normalized within a week. Neoadjuvant chemotherapy was then initiated. CONCLUSION: Using the fanning method in EUS-TS can inadvertently cause damage to the pancreatic duct and may lead to clinically significant pancreatitis. Placing a pancreatic stent may immediately resolve acute pancreatitis and shorten the waiting time for curative therapy. When using the fanning method during EUS-TS, ductal structures should be excluded to prevent pancreatic ductal leakage.

19.
J Hazard Mater ; 470: 134089, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579580

ABSTRACT

Photocatalytic removal of gaseous hydrogen sulfide (H2S) has been studied through the control of key process variables using a prototype air purifier (AP) fabricated with titanium dioxide (TiO2)-supported mercury. The performance of Hg/TiO2 systems, prepared with different Hg mass proportions over TiO2 (such as 0.1%, 1%, 2%, and 5%), is measured against 5 ppm H2S at 160 L min-1 under UV irradiation. Accordingly, their removal efficiency (RE) values after 360 s are 40.3%, 74.8%, 99.3%, and 99.9%, respectively (relative to 33.5% of AP (TiO2)). An AP with a 2% Hg/TiO2 unit achieves a clean air delivery rate of 32 L min-1 with kinetic reaction rate (r (at 10% RE)) of 0.774 mmol h-1 g-1, quantum yield of 2.19E-02 molecules photon-1, and space-time yield of 1.46E-04 molecules photon-1 mg-1. The superior photocatalytic performance of Hg/TiO2 is supported by superoxide anion and hydroxyl radicals formed in dry air and humid nitrogen (N2) environments, respectively. A density functional theory simulation suggests that the presence of oxygen vacancies should promote the disparities in the electronic structure to subsequently affect the reaction pathways and energetics. The presence of moisture enhances the robust formation of a mercury-OH bond to favorably yield ß-mercury sulfide from H2S.

20.
ACS Appl Mater Interfaces ; 16(26): 33669-33687, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912904

ABSTRACT

To learn more about the behavior of amine (NH2)-functionalized metal-organic framework (MOF)-derived noble metal catalysts in the removal of aromatic volatile organic compounds in air, benzene oxidation at low temperatures has been investigated using 0.2-, 0.8-, and 1.5%-platinum (Pt)/Universitetet i Oslo (UiO)-66-NH2. The benzene conversion (XB) of x%-Pt/UiO-66-NH2-R under dry conditions (175 °C) was 23% (x = 0.2%) < 52% (x = 0.8%) < 100% (x = 1.5%): 'R' suffix denotes reduction pretreatment using a hydrogen (10 vol %) and nitrogen mixture at 300 °C for the generation of metallic Pt (Pt0) sites and simultaneous partial MOF decomposition into carbon- and nitrogen-loaded zirconium dioxide. The prominent role of reduction pretreatment was apparent in benzene oxidation as 1.5%-Pt/UiO-66-NH2 did not exhibit catalytic activity below 175 °C (dry condition). The promotional role of moisture in benzene oxidation by 1.5%-Pt/UiO-66-NH2-R was evident with a rise in the steady-state reaction rate (r) at 110 °C (21 kPa molecular oxygen (O2)) from 1.3 × 10-3 to 5.0 × 10-3 µmol g-1 s-1 as the water (H2O) partial pressure increased from 0 to 1.88 kPa. In contrast, the activity was lowered with increasing RH due to catalyst poisoning by excess moisture (r (110 °C) of 6.6 × 10-04 µmol g-1 s-1 at 2.83 kPa H2O (21 kPa O2)). Kinetic modeling suggests that XB proceeds through the Langmuir-Hinshelwood mechanism on the Pt/UiO-66-NH2-R surface (dissociative O2 chemisorption and the involvement of two oxygen species in benzene oxidation). According to the density functional theory simulation, the carbon and nitrogen impurities are to make the first XB step (i.e., hydrogen migration from the benzene molecule to the substrate) energetically favorable. The second hydrogen atom from the benzene molecule is also extracted effectively, while the oxygen derived from O2 facilitates further XB. The Pt0 sites dissociate the O2 and H2O molecules, while the product of the latter, i.e., free hydrogen and hydroxyl, makes the subsequent XB steps energetically favorable.

SELECTION OF CITATIONS
SEARCH DETAIL