Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Anim Biosci ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38938030

ABSTRACT

Objective: The objective was to investigate growth performance, antioxidant enzyme activity, intestinal morphology, immune cell distribution, short chain fatty acid (SCFA) profile, and microbiota in broiler chickens fed a diet containing Lacticaseibacillus paracasei NSMJ15. Methods: A total of 120-day-old Ross 308 male broilers were allocated to 2 dietary treatments in a randomized complete block design. A control group was fed a corn-soybean meal control diet, and an NSMJ15-supplemented group was fed a control diet supplemented with 1 g/kg L. paracasei NSMJ15 at the expense of cornstarch. Each dietary treatment had 6 replicates with 10 birds per cage. Growth performance was recorded on day 9. On day 10, one bird representing median body weight was selected to collect serum for antioxidant enzyme activity, jejunal tissue for immune cell isolation and morphometric analysis, and cecal digesta for 16S rRNA gene sequencing and SCFA analysis. Results: Supplementation of L. paracasei NSMJ15 did not affect growth performance, serum antioxidant enzyme activity, and jejunal histomorphology compared to the control group. In the NSMJ15-supplemented group, the population of CD3+CD4+CD8- T cells increased (p=0.010), while the population of CD3+CD8+TCRγδ+ T cells decreased (p=0.022) compared to the control group. The L. paracasei NSMJ15 supplementation decreased (p=0.022) acetate concentration in the cecal digesta compared to the control group. The 16S rRNA gene sequencing analysis showed that NSMJ15-supplemented group differentially expressed (p<0.05) 10 more amplicon sequence variants compared to control group without affecting alpha and beta diversity indices of the cecal microbiota. Genera Mediterraneibacter and Negativibacillus were positively (p<0.05) correlated with CD4+ T cells, while genera Gemmiger, Coprococcus, Sellimonas, Massilimicrobiota, and Blautia were negatively (p<0.05) correlated with SCFA concentration. Conclusion: The results of the present study suggest dietary L. paracasei NSMJ15 supplementation may increase percentage of CD4+ T cells and decrease acetate concentration in broiler chickens by increasing the differential expression of specific microbial genera.

2.
Gels ; 10(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38920911

ABSTRACT

This study examined the tensile strength and biocompatibility properties of polyvinyl alcohol (PVA) hydrogel tissue regeneration scaffolds with polylactic acid (PLA) mesh fabric added as reinforcement, with a focus on the impact of heat treatment temperature and the number of layers of the PLA mesh fabric. The hydrogel scaffolds were prepared using a freeze-thaw method to create PVA hydrogel, with the PLA mesh fabric placed inside the hydrogel. The swelling ratio of the PVA/PLA hydrogel scaffolds decreased with increasing layer number and heat treatment temperature of the PLA mesh. The gel strength was highest when five layers of PLA mesh fabric were added, heat-treated at 120 °C, and confirmed to be properly placed inside the hydrogel by SEM images. The MTT assay and DAPI staining using HaCaT cells demonstrated that the cell proliferation was uninterrupted throughout the experimental period, confirming the biocompatibility of the scaffold. Therefore, we confirmed the possibility of using PLA mesh fabric as a reinforcement for PVA hydrogel to improve the strength of scaffolds for tissue regeneration, and we confirmed the potential of PLA mesh fabric as a reinforcement for various biomaterials.

3.
Front Cell Infect Microbiol ; 14: 1362773, 2024.
Article in English | MEDLINE | ID: mdl-39081865

ABSTRACT

Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.


Subject(s)
Anti-Bacterial Agents , Colitis , Coumarins , Disease Models, Animal , Gastrointestinal Microbiome , Coumarins/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Colitis/microbiology , Colitis/drug therapy , Anti-Bacterial Agents/pharmacology , Mice , Cytokines/metabolism , Bacteria/drug effects , Bacteria/classification , Mice, Inbred C57BL , Inflammation/drug therapy , Th17 Cells/drug effects , Th17 Cells/immunology , Th1 Cells/immunology , Th1 Cells/drug effects , Male
4.
Poult Sci ; 103(4): 103505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359769

ABSTRACT

This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.


Subject(s)
Lacticaseibacillus paracasei , Microbiota , Probiotics , Animals , Female , Antioxidants , Chickens , Diet/veterinary , Probiotics/pharmacology , Probiotics/analysis , Dietary Supplements/analysis , Animal Feed/analysis
5.
Gut Microbes ; 16(1): 2319889, 2024.
Article in English | MEDLINE | ID: mdl-38391178

ABSTRACT

The gut microbiota plays a pivotal role in metabolic disorders, notably type 2 diabetes mellitus (T2DM). In this study, we investigated the synergistic potential of combining the effects of Bifidobacterium longum NBM7-1 (CKD1) with anti-diabetic medicines, LobeglitazoneⓇ (LO), SitagliptinⓇ (SI), and MetforminⓇ (Met), to alleviate hyperglycemia in a diabetic mouse model. CKD1 effectively mitigated insulin resistance, hepatic steatosis, and enhanced pancreatic ß-cell function, as well as fortifying gut-tight junction integrity. In the same way, SI-CKD1 and Met- CKD1 synergistically improved insulin sensitivity and prevented hepatic steatosis, as evidenced by the modulation of key genes associated with insulin signaling, ß-oxidation, gluconeogenesis, adipogenesis, and inflammation by qRT-PCR. The comprehensive impact on modulating gut microbiota composition was observed, particularly when combined with MetforminⓇ. This combination induced an increase in the abundance of Rikenellaceae and Alistipes related negatively to the T2DM incidence while reducing the causative species of Cryptosporangium, Staphylococcaceae, and Muribaculaceae. These alterations intervene in gut microbiota metabolites to modulate the level of butyrate, indole-3-acetic acid, propionate, and inflammatory cytokines and to activate the IL-22 pathway. However, it is meaningful that the combination of B. longum NBM7-1(CKD1) reduced the medicines' dose to the level of the maximal inhibitory concentrations (IC50). This study advances our understanding of the intricate relationship between gut microbiota and metabolic disorders. We expect this study to contribute to developing a prospective therapeutic strategy modulating the gut microbiota.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Metformin , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Up-Regulation , Diabetes Mellitus, Experimental/drug therapy , Metformin/pharmacology , Metformin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL