Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Appl Toxicol ; 41(7): 1038-1049, 2021 07.
Article in English | MEDLINE | ID: mdl-33085125

ABSTRACT

Recent research on in vitro systems has focused on mimicking the in vivo situation of cells within the respiratory system. However, few studies have predicted inhalation toxicity using conventional and simple submerged two-dimensional (2D) cell culture models. We investigated the conventional submerged 2-D cell culture model as a method for the prediction of acute inhalation toxicity. Median lethal concentration (LC50 ) (rat, inhalation, 4 h) and half maximal inhibitory concentration (IC50 ) (lung or bronchial cell, 24 h) data for 59 substances were obtained from the literature and by experiments. Cytotoxicity assays were performed on 44 substances with reported LC50 , but without IC50 , data to obtain the IC50 values. A weak correlation was observed between the IC50 and LC50 of all substances. Semi-volatile organic compounds (SVOCs) and non-VOCs (NVOCs) (16 substances) with a water solubility of ≥1 g/L were strongly correlated between 24-h IC50 and 4-h LC50 , and this had an excellent predictive ability to distinguish between Categories 1-3 and 4 (Globally Harmonized System classification for acute inhalation toxicity). Our results suggest that the submerged 2-D cell culture model may be used to predict in vivo acute inhalation toxicity for substances with a water solubility of ≥1 g/L in SVOCs and NVOCs.


Subject(s)
Epithelial Cells/drug effects , Inhalation Exposure , Lung/drug effects , Toxicity Tests/methods , Administration, Inhalation , Animal Testing Alternatives , Animals , Cell Culture Techniques , Cell Line , Humans , Lethal Dose 50 , Rats
2.
J Appl Toxicol ; 41(3): 470-482, 2021 03.
Article in English | MEDLINE | ID: mdl-33022792

ABSTRACT

Cetylpyridinium chloride (CPC), a quaternary ammonium compound and cationic surfactant, is used in personal hygiene products such as toothpaste, mouthwash, and nasal spray. Although public exposure to CPC is frequent, its pulmonary toxicity has yet to be fully characterized. Due to high risks of CPC inhalation, we aimed to comprehensively elucidate the in vitro and in vivo toxicity of CPC. The results demonstrated that CPC is highly cytotoxic against the A549 cells with a half-maximal inhibitory concentration (IC50 ) of 5.79 µg/ml. Following CPC exposure, via intratracheal instillation (ITI), leakage of lactate dehydrogenase, a biomarker of cell injury, was significantly increased in all exposure groups. Further, repeated exposure of rats to CPC for 28 days caused a decrease in body weight of the high-exposure group and the relative weights of the lungs and kidneys of the high recovery group, but no changes were evident in the histological and serum chemical analyses. The bronchoalveolar lavage fluid (BALF) analysis showed a significant increase in proinflammatory cytokines interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α levels. ITI of CPC induced focal inflammation of the pulmonary parenchyma in rats' lungs. Our study demonstrated that TNF-α was the most commonly secreted proinflammatory cytokine during CPC exposure in both in vitro and in vivo models. Polymorphonuclear leukocytes in the BALF, which are indicators of pulmonary inflammation, significantly increased in a concentration-dependent manner in all in vivo studies including the ITI, acute, and subacute inhalation assays, demonstrating that PMNs are the most sensitive parameters of pulmonary toxicity.


Subject(s)
A549 Cells/drug effects , Anti-Infective Agents, Local/toxicity , Cell Survival/drug effects , Cetylpyridinium/toxicity , Pneumonia/chemically induced , Pneumonia/physiopathology , Animals , Disease Models, Animal , Humans , Male , Rats , Rats, Sprague-Dawley
3.
Indoor Air ; 30(5): 925-941, 2020 09.
Article in English | MEDLINE | ID: mdl-32201992

ABSTRACT

Physicochemical properties between colloidal engineered nanomaterials (ENMs) and aerosols released from consumer spray products were characterized. A dynamic light scattering (DLS), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometer (ICP-MS) were used to evaluate the suspended ENMs in the products. Direct-reading instruments, TEM, and ICP-MS were used to characterize the properties of aerosolized ENMs. The aerosolized organic compounds with ENMs were assumed to be vaporized for a short time after spraying. The median diameter of ENMs in product solutions measured by DLS was about 200-350 nm, while individual particle was confirmed from 3 to 50 nm by TEM. The size of aerosolized ENMs was ranged from 7 to 44 nm, and their aggregates were about 100-1000 nm in near distance. Some inorganic substances including raw nanomaterials were also found in the aerosol. The particles released from the propellant sprays were identified in far distance, while they were not found in far distance when pump sprays were used. The number concentration from the propellant sprays increased up to 6000 particles/cm3 /g at near distance and dispersed to far distance, while the most of droplets emitted from pump sprays were settled down near sprayer's location. We found other metals besides labeled ENMs are included in each product and the characteristics of the particles are different when they are sprayed.


Subject(s)
Air Pollution, Indoor/analysis , Nanostructures/analysis , Aerosols , Dust , Inhalation Exposure , Particle Size
4.
Toxicol Appl Pharmacol ; 378: 114609, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31173787

ABSTRACT

Benzalkonium chloride (BAC), a disinfectant, and triethylene glycol (TEG), an organic solvent/sanitizer, are frequently combined in commercially available household sprays. To assess the respiratory effect of this combination, Sprague-Dawley rats were exposed to an aerosol containing BAC (0.5%, w/v) and TEG (10%, w/v) for up to 2 weeks in a whole-body inhalation chamber. BAC (4.1-4.5 mg/m3, sprayed from 0.5% solution) promoted pulmonary cell damage and inflammation as depicted by the increase in total protein, lactate dehydrogenase, polymorphonuclear leukocytes, and macrophage inflammatory protein-2 in the bronchoalveolar lavage fluid, whereas TEG (85.3-94.5 mg/m3, sprayed from 10% solution) did not affect the lung. Rats exposed to the BAC/TEG mixture for 2 weeks showed severe respiratory symptoms (sneezing, wheezing, breath shortness, and chest tightness), but no lung damage or inflammation was observed. However, significant ulceration and degenerative necrosis were observed in the nasal cavities of rats repeatedly exposed to the BAC/TEG mixture. The mass median aerodynamic diameters of the aqueous, BAC, TEG and BAC/TEG aerosols were 1.24, 1.27, 3.11 and 3.24 µm, respectively, indicating that TEG-containing aerosols have larger particles than those of the aqueous and BAC alone aerosols. These results suggest that the toxic effects of BAC and BAC/TEG aerosols on the different respiratory organs may be associated with the difference in particle diameter, since particle size is important in determining the deposition site of inhaled materials.


Subject(s)
Benzalkonium Compounds/toxicity , Inhalation Exposure/adverse effects , Polyethylene Glycols/toxicity , Administration, Inhalation , Aerosols/toxicity , Animals , Bronchoalveolar Lavage Fluid , Chemokine CXCL2/metabolism , Lung/drug effects , Male , Particle Size , Rats , Rats, Sprague-Dawley
5.
Ecotoxicol Environ Saf ; 173: 174-181, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30772707

ABSTRACT

Gemfibrozil, a lipid-regulating pharmaceutical, has been widely used for treating dyslipidemia in humans and detected frequently in freshwater environments. Since plasma cholesterol is a precursor of steroid hormones, the use of gemfibrozil may influence the sex hormone balances. However, its endocrine toxicity following long-term exposure is not well understood. The purpose of the present study is to investigate the effects of gemfibrozil on sex hormones and reproductive outcomes in a freshwater fish, following a long-term (155 d) exposure. For this purpose, Japanese medaka embryos (F0) were exposed to a series of gemfibrozil concentrations, i.e., 0, 0.04, 0.4, 3.7, and 40 mg/L for 155 d, and reproductive parameters, sex hormones, and associated gene expressions were assessed. For comparison, a short-term exposure (21 d) was performed separately with adult medaka and measured for sex hormones and related gene expressions. Following the 155 d long-term exposure, the fecundity showed a decreasing pattern. In addition, at 3.7 mg/L gemfibrozil, testosterone (T) level in the female fish was significantly decreased, and the hatchability of F1 fish was significantly decreased. The estrogen receptor (er) or vitellogenin (vtg) genes in gonads and liver were up-regulated. However, plasma cholesterol levels did not show significant changes in both sexes. The observations from the short-term (21 d) exposure were different from those of the long-term exposure. Following the short-term exposure, decreased 17ß-estradiol (E2), and 11-ketotestosterone (11-KT) levels along with decrease plasma cholesterol were observed in the male fish. The hormone disruption following the short-term exposure appears to be associated with the hypocholesterolemic activity of gemfibrozil. Our results show that the mechanisms of gemfibrozil toxicity may depend on the exposure duration. Consequences of long-term exposure to other fibrates in the water environment warrant further investigations.


Subject(s)
Gemfibrozil/toxicity , Hypolipidemic Agents/toxicity , Oryzias/physiology , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cholesterol/blood , Female , Fish Proteins/genetics , Gonadal Steroid Hormones/blood , Gonads/drug effects , Gonads/metabolism , Liver/drug effects , Liver/metabolism , Male , Receptors, Estrogen/genetics , Vitellogenins/genetics
6.
Environ Toxicol ; 34(5): 561-572, 2019 May.
Article in English | MEDLINE | ID: mdl-30786124

ABSTRACT

Benzalkonium chloride (BAC) is a widely used disinfectant/preservative, and respiratory exposure to this compound has been reported to be highly toxic. Spray-form household products have been known to contain BAC together with triethylene glycol (TEG) in their solutions. The purpose of this study was to estimate the toxicity of BAC and TEG mixtures to pulmonary organs using in vitro and in vivo experiments. Human alveolar epithelial (A549) cells incubated with BAC (1-10 µg/mL) for 24 hours showed significant cytotoxicity, while TEG (up to 1000 µg/mL) did not affect cell viability. However, TEG in combination with BAC aggravated cell damage and inhibited colony formation as compared to BAC alone. TEG also exacerbated BAC-promoted production of reactive oxygen species (ROS) and reduction of glutathione (GSH) level in A549 cells. However, pretreatment of the cells with N-acetylcysteine (NAC) alleviated the cytotoxicity, indicating oxidative stress could be a mechanism of the toxicity. Quantification of intracellular BAC by LC/MS/MS showed that cellular distribution/absorption of BAC was enhanced in A549 cells when it was exposed together with TEG. Intratracheal instillation of BAC (400 µg/kg) in rats was toxic to the pulmonary tissues while that of TEG (up to 1000 µg/kg) did not show any harmful effect. A combination of nontoxic doses of BAC (200 µg/kg) and TEG (1000 µg/kg) promoted significant lung injury in rats, as shown by increased protein content and lactate dehydrogenase (LDH) activity in bronchoalveolar lavage fluids (BALF). Moreover, BAC/TEG mixture recruited inflammatory cells, polymorphonuclear leukocytes (PMNs), in terminal bronchioles and elevated cytokine levels, tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in BALF. These results suggest that TEG can potentiate BAC-induced pulmonary toxicity and inflammation, and thus respiratory exposure to the air mist from spray-form products containing this chemical combination is potentially harmful to humans.


Subject(s)
Benzalkonium Compounds/toxicity , Lung Injury/chemically induced , Lung/drug effects , Oxidative Stress/drug effects , Pneumonia/chemically induced , Polyethylene Glycols/toxicity , A549 Cells , Animals , Benzalkonium Compounds/administration & dosage , Benzalkonium Compounds/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Cell Culture Techniques , Cell Survival/drug effects , Cytokines/analysis , Drug Synergism , Humans , Lung Injury/metabolism , Lung Injury/pathology , Male , Oxidative Stress/immunology , Pneumonia/metabolism , Pneumonia/pathology , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/metabolism , Rats, Sprague-Dawley
7.
Toxicol Ind Health ; 35(8): 507-519, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31462197

ABSTRACT

In commercial products such as household deodorants or biocides, didecyldimethylammonium chloride (DDAC) often serves as an antimicrobial agent, citral serves as a fragrance agent, and the excipient ethylene glycol (EG) is used to dissolve the active ingredients. The skin sensitization (SS) potentials of each of these substances are still being debated. Moreover, mixtures of DDAC or citral with EG have not been evaluated for SS potency. The in vitro alternative assay called human Cell Line Activation Test (h-CLAT) and Direct Peptide Reactivity Assay (DPRA) served to address these issues. On three independent runs of h-CLAT, DDAC and citral were predicted to be sensitizers while EG was predicted to be a non-sensitizer and also by the DPRA. Mixtures of DDAC or citral with EG at ratios of 7:3 and 1:4 w/v were all positive by the h-CLAT in terms of SS potential but SS potency was mitigated as the proportion of EG increased. Citral and its EG mixtures were all positive but DDAC and its EG mixtures were all negative by the DPRA, indicating that the DPRA method is not suitable for chemicals with pro-hapten characteristics. Since humans can be occupationally or environmentally exposed to mixtures of excipients with active ingredients, the present study may give insights into further investigations of the SS potentials of various chemical mixtures.


Subject(s)
Acyclic Monoterpenes/adverse effects , Ethylene Glycol/adverse effects , Excipients/adverse effects , Quaternary Ammonium Compounds/adverse effects , Skin Irritancy Tests/methods , Skin/drug effects , Acyclic Monoterpenes/administration & dosage , Animal Testing Alternatives/methods , B7-2 Antigen/metabolism , Biological Assay/methods , Cell Line , Ethylene Glycol/administration & dosage , Excipients/administration & dosage , Humans , Intercellular Adhesion Molecule-1/metabolism
8.
Fish Physiol Biochem ; 45(3): 873-883, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30387033

ABSTRACT

n-Butyl acrylate (nBA) is one of acrylate esters which has been applied to diverse industrial fields. For unveiling of xeno-estrogenic effects and oxidative stress induction by nBA under two-generational exposure regimen (17 weeks), the biomarkers relevant to an estrogenic effect and oxidative stress were analyzed. Acute toxicity value of nBA in Oryzias latipes was 7.2 mg/L (96 h-LC50). Over exposure time, the significant transcriptional change of cytochrome P450 19A (CYP19A) and vitellogenin 1/2 (VTG1/2) was not observed (one-way ANOVA, P < 0.05), meaning no estrogenic effect of nBA. Significant reduction of glutathione (GSH) content was observed in F0 male and female fish, while in F1 male, the content was increased (P < 0.05). Catalase (CAT) activity of male fish showed the significant decrease in both F0 and F1 fish, showing multi-generational suppressing effect of nBA on CAT activity. But in case of reactive oxygen species (ROS), expression level and glutathione S-transferase (GST) activity were not modulated in response to nBA. These findings suggest that nBA could affect an antioxidant system alteration through GSH depletion and inhibition of CAT activity which could be transferred to the next generation, whereas xeno-estrogenic effect would be questionable.


Subject(s)
Acrylates/toxicity , Antioxidants/metabolism , Gene Expression Regulation/drug effects , Oryzias/genetics , Acrylates/metabolism , Adaptation, Physiological/physiology , Animals , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Liver/metabolism , Male , Oryzias/metabolism , Toxicity Tests, Acute
9.
Environ Sci Technol ; 51(13): 7624-7638, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28441862

ABSTRACT

We evaluated the spatial-temporal dispersion of airborne nanomaterials during the use of spray consumer products and estimated the level of consumer inhalation exposure. A total of eight spray products including five propellant and three pump types were selected to evaluate the dispersion of airborne nanoparticles across time and space in a cleanroom which could control the background particles. Four products were advertised to contain silver and one contained titanium nanoparticles, while three products were specified no ENM but as being manufactured through the use of nanotechnology. We used direct-reading instruments with a thermodesorber unit to measure the particles (number, mass, surface area), as well as filter sampling to examine physicochemical characteristics. Sampling was conducted simultaneously at each location (1 m, near-field; 2, 3 m, far-field) by distance from the source. We estimated the inhaled doses at the breathing zone, and the doses deposited in each part of the respiratory tract using the experimental data and mathematical models. Nanoparticles released from the propellant sprays persisted in the air and dispersed over a large distance due to their small size (1466-5565 particles/cm3). Conversely, the pump sprays produced larger droplets that settled out of the air relatively close to the source, so the concentration was similar to background level (<200 particles/cm3). The estimates of inhalation exposure also suggested that exposure to nanoparticles was greater with propellant sprays (1.2 × 108 ± 4.0 × 107 particles/kgbw/day) than pump sprays (2.7 × 107 ± 6.5 × 106 particles/kgbw/day). We concluded that the propellant sprays create a higher risk of exposure than the pump sprays.


Subject(s)
Inhalation Exposure , Nanoparticles , Aerosols , Cosmetics , Household Products , Humans , Nanotechnology , Particle Size , Silver
10.
J Toxicol Environ Health A ; 78(4): 226-43, 2015.
Article in English | MEDLINE | ID: mdl-25674826

ABSTRACT

Toxicokinetics of zinc oxide nanoparticles (ZnONP) was studied in rats via a single intravenous (iv) injection and a single oral administration (3 mg/kg or 30 mg/kg), respectively. Blood concentrations of zinc (Zn) were monitored for 7 d and tissue distribution were determined in liver, kidneys, lung, spleen, thymus, brain, and testes. To ascertain the excretion of ZnONP, Zn levels in urine and feces were measured for 7 d. ZnONP were not readily absorbed from the gastrointestinal tract (GIT) after oral administration and were excreted mostly in feces. When the nanoparticles were injected iv to rats at a dose of 30 mg/kg, peak concentration appeared at 5 min but returned to normal range by d 2 (48 h after injection). ZnONP were distributed mainly to liver, kidneys, lung, and spleen, but not to thymus, brain, and testes. The distribution level was significantly decreased to normal by d 7. Feces excretion levels after iv injection supported biliary excretion of ZnONP. In rats injected iv with 30 mg/kg, mitotic figures in hepatocytes were significantly increased and multifocal acute injuries with dark brown pigment were noted in lungs, while no significant damage was observed in rats treated orally with the same dosage.


Subject(s)
Nanoparticles/toxicity , Zinc Oxide/toxicity , Administration, Oral , Animals , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Feces/chemistry , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Injections, Intravenous , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Male , Nanoparticles/chemistry , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/metabolism , Testis/drug effects , Testis/metabolism , Thymus Gland/drug effects , Thymus Gland/metabolism , Tissue Distribution , Zinc/pharmacokinetics , Zinc Oxide/pharmacokinetics
11.
Regul Toxicol Pharmacol ; 71(2): 259-68, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25591546

ABSTRACT

The present study was conducted to investigate the potential subchronic toxicity of triclosan (TCS) in rats following 28 days of exposure by repeated inhalation. Four groups of six rats of each sex were exposed to TCS-containing aerosols by nose-only inhalation of 0, 0.04, 0.13, or 0.40 mg/L for 6 h/day, 5 days/week over a 28-day period. During the study period, clinical signs, mortality, body weight, food consumption, ophthalmoscopy, hematology, serum biochemistry, gross pathology, organ weights, and histopathology were examined. At 0.40 mg/L, rats of both sexes exhibited an increase in the incidence of postdosing salivation and a decrease in body weight. Histopathological alterations were found in the nasal septum and larynx. There were no treatment-related effects in rats of either sex at ⩽0.13 mg/L. Under the present experimental conditions, the target organs in rats were determined to be the nasal cavity and larynx. The no-observed-adverse-effect concentration in rats was determined to be 0.13 mg/L.


Subject(s)
Aerosols/administration & dosage , Aerosols/toxicity , Inhalation Exposure/adverse effects , Triclosan/administration & dosage , Triclosan/toxicity , Administration, Inhalation , Animals , Body Weight/drug effects , Drug Evaluation, Preclinical/methods , Female , Male , Rats , Rats, Sprague-Dawley , Time Factors
12.
Int J Toxicol ; 34(6): 491-9, 2015.
Article in English | MEDLINE | ID: mdl-26482432

ABSTRACT

Talc is a mineral that is widely used in cosmetic products, antiseptics, paints, and rubber manufacturing. Although the toxicological effects of talc have been studied extensively, until now no detailed inhalation study of talc focusing on oxidative stress has been done. This repeated 4 weeks whole-body inhalation toxicity study of talc involved Sprague-Dawley rats. Male and female groups of rats were exposed to inhaled talc at 0, 5, 50, and 100 mg/m(3) for 6 hours daily, 5 days/week for 4 weeks. The objective was to identify the 4-week inhalation toxicity of talc and investigate antioxidant activity after exposure to talc. There were no treatment-related symptoms or mortality in rats treated with talc. Glucose (GLU) was decreased significantly in male rats exposed to 50 and 100 mg/m(3) of talc. Histopathological examination revealed infiltration of macrophages on the alveolar walls and spaces near the terminal and respiratory bronchioles. In male and female rats exposed to 100 mg/m(3) talc, expression of superoxide dismutase 2, a typical biological indicator of oxidative damage, was significantly increased. Thus, inhalation of talc induces macrophage aggregations and oxidative damage in the lung.


Subject(s)
Macrophages/drug effects , Superoxide Dismutase/biosynthesis , Talc/toxicity , Administration, Inhalation , Animals , Antioxidants/metabolism , Blood Glucose/metabolism , Bronchioles/pathology , Female , Glutathione Peroxidase/metabolism , Lung/pathology , Male , Oxidative Stress/drug effects , Pulmonary Alveoli/pathology , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Superoxide Dismutase/genetics , Talc/administration & dosage , Up-Regulation
13.
Ecotoxicol Environ Saf ; 104: 9-17, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24632117

ABSTRACT

The uptake of nanoparticles by aquatic organisms such as fish has raised concerns about the possible adverse effects of nanoparticles (NPs). In this study, we aimed to evaluate the toxicological effects in juvenile common carp exposed to zinc oxide nanoparticles (ZnO-NPs) for 12 weeks. The carp were exposed to 0 (control), 0.1, 0.3, 0.8, and 2.4mg/L of ZnO-NPs under a flow-through exposure system. Fish were sampled at 0, 4, 8, and 12 weeks to test for zinc in the test water and blood, and biochemistry analysis; further, they were sampled at 12 weeks to observe ultrastructural changes in the liver, kidney, and gill. In the organic serum, changes in the glutamic pyruvic transaminase/alanine aminotransferase (GPT/ALT) and glutamic oxaloacetic transaminase/aspartate aminotransferase (GOT/AST) levels were significant, but changes in the lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels were not significantly different across all exposure periods. In the inorganic serum, the magnesium (Mg), inorganic phosphorus (IP), sodium (Na(+)), and chloride (Cl(-)) levels were significantly different in the exposure group and across exposure periods. However, calcium (Ca) and potassium (K(+)) levels were not significantly different. In the enzyme serum, the glucose (GLU) level significantly increased for the highest exposure group, but the total cholesterol (TCHO), triglyceride (Tg), and total protein (TP) levels were not significantly different during the exposure period. Ultrastructural changes in the liver induced changes in the black granules (of various sizes) in the lysosomes, indistinct nucleus membrane, and non-spherical nucleus. In the kidney, some mild changes were observed in the size and number of the lysosomes in the renal tubule. Desquamation and hypertrophy of pavement epithelial cells and vacuolation in the cytoplasm of the chloride cells were observed in the gill. Nanoparticles were also observed in the red blood cells, cytoplasm of all tissues, and glomerulus of the kidney. The observed changes in the serum and tissues may provide useful information regarding environmental conditions and risk assessments of aquatic organisms.


Subject(s)
Carps/physiology , Enzymes/blood , Gills/drug effects , Kidney/drug effects , Liver/drug effects , Nanoparticles/toxicity , Zinc Oxide/toxicity , Animals , Blood Chemical Analysis , Enzyme Activation/drug effects , Water Pollutants, Chemical/toxicity
14.
Article in English | MEDLINE | ID: mdl-24279620

ABSTRACT

Increase in the use of manufactured nanomaterials (NMs) has led to concerns about the environmental impacts. Especially, hazard of metal-based NMs is more severe due to ions released from surface by water quality parameters and physicochemical properties after entering into the water environment. However, little is known about the effects of ionization on the toxicity of metal-based NMs in the water environment. To address this question, we prepared the suspensions of silver nanoparticles (AgNP) at 25 µg L(-1) containing different concentrations of Ag(+) (5, 10, 20, 45, and 75% Ag(+) to total Ag), and evaluated their toxicity to Japanese medaka (Oryzias latipes) embryos. Higher Ag(+) ratios in the AgNP suspension, suggesting the lower number of particles, led to the higher adverse effects on embryos and sac-fries. In addition, histopathology analysis revealed that AgNPs penetrated through chorion of eggs and skin membrane, and were distributed into the tissues. The results imply that the ionization could decrease the toxicity of metal-based NMs in the water environment.


Subject(s)
Embryo, Nonmammalian/drug effects , Nanoparticles/toxicity , Oryzias/embryology , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian/pathology , Ions/toxicity , Mortality , Silver/chemistry , Silver/pharmacokinetics , Toxicity Tests/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacokinetics
15.
J Biomed Biotechnol ; 2012: 262670, 2012.
Article in English | MEDLINE | ID: mdl-23093839

ABSTRACT

Juvenile common carp (Cyprinus carpio) were used as a model to investigate acute toxicity and oxidative stress caused by silver nanoparticles (Ag-NPs). The fish were exposed to different concentrations of Ag-NPs for 48 h and 96 h. After exposure, antioxidant enzyme levels were measured, including glutathione-S-transferase (GST), superoxidase dismutase, and catalase (CAT). Other biochemical parameters and histological abnormalities in different tissues (i.e., the liver, gills, and brain) were also examined. The results showed that Ag-NPs agglomerated in freshwater used during the exposure experiments, with particle size remaining <100 nm. Ag-NPs had no lethal effect on fish after 4 days of exposure. Biochemical analysis showed that enzymatic activities in the brain of the fish exposed to 200 µg/L of Ag-NPs were significantly reduced. Varied antioxidant enzyme activity was recorded in the liver and gills. Varied antioxidant enzyme activity was recorded for CAT in the liver and GST in the gills of the fish. However, the recovery rate of fish exposed to 200 µg/L of Ag-NPs was slower than when lower particle concentrations were used. Other biochemical indices showed no significant difference, except for NH(3) and blood urea nitrogen concentrations in fish exposed to 50 µg/L of Ag-NPs. This study provides new evidence about the effects of nanoparticles on aquatic organisms.


Subject(s)
Antioxidants/metabolism , Carps/physiology , Citric Acid/chemistry , Nanocapsules/toxicity , Oxidative Stress/drug effects , Silver/toxicity , Animals , Materials Testing
16.
Inhal Toxicol ; 24(11): 741-50, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22954398

ABSTRACT

Fly ash from industrial waste incinerators has been a significant concern because of their constituent toxic heavy metals and organic compounds. The objective of this study was to identify the subacute inhalation toxicity of fly ash from industrial waste incinerators, using whole body inhalation exposure chambers. Male and female groups of Sprague-Dawley rats were exposed to fly ash by inhalation of concentrations of 0, 50, 100, 200 mg/m(3), for 6 h/day, 5 days/week for 4 weeks. There was no significant difference in body weight, and relative organ weight to body weight, between the exposure groups and the control group. Hematological examinations revealed a significant increase of monocyte counts in fly ash exposed rats and brown pigment laden macrophage was found in the lungs of rats exposed to high concentration of fly ash. A decrease of blood glucose levels and an increase in glutamate oxaloacetate transaminase activity were observed in fly ash treated rats. There was also a significant increase of lactate dehydrogenase levels in rat blood exposed fly ash. A significant dose-dependent increase of DNA damage was found in lymphocytes, spleen, bronchoalveolar lavage, liver, lung, and thymus of rats exposed to fly ash. In addition, the level of lipid peroxidation was increased in the plasma of rats exposed to a high concentration of fly ash. These results suggest that inhalation of fly ash from industrial waste incinerators can induce histopathologic, hematological, and serum biochemical changes and oxidative damage.


Subject(s)
Air Pollutants/toxicity , Coal Ash/toxicity , Incineration , Industrial Waste/analysis , Animals , Female , Inhalation Exposure , Lipid Peroxidation , Male , Malondialdehyde/blood , Rats , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-35422491

ABSTRACT

BACKGROUND: There has been an increasing need to update the recommended values of Korean exposure factors for adults aged 19 and older, as using exposure factors developed over a decade ago could reduce risk assessment reliability. OBJECTIVE: Exposure factor data have been compiled and standardized using the latest national statistical reports and academic literature, as well as studies conducted from 2016 to 2018. METHODS: The updated data contained anthropometric parameters, inhalation rates, food and drinking water ingestion rates, and time-activity patterns and provided technical information on Koreans' exposure factors classified by sex, age group, per capita and general population, and doer-only for various exposure assessments. RESULTS: Although the average life expectancy, body weight, body surface area, and inhalation rate increased slightly compared to the 2007 Korean Exposure Factor Handbook, differences various in food consumption were remarkable. Because of Asians' similar food preferences, the intake rate of grain products and vegetables in Koreans, Chinese, and Japanese contributed much toward total intake. Koreans spent half their times outdoors compared to Americans and Chinese. SIGNIFICANCE: This study provided the currently updated exposure factor information for Koreans and could be compared with recommendations provided by exposure factor resources in various countries. IMPACT STATEMENT: Exposure to environmental pollutants may significantly vary depending on the exposure factors related to human behaviors and characteristics. Therefore the exposure factors need to be continuously updated along with more extensive survey areas and improved measurement methods. We utilized the existing data with the aim to develop general exposure factors for risk assessment in Korean aged ≥19 years. Measurements and questionnaire surveys were also performed if there were no existing data. This study provided the currently updated exposure factor information for Koreans and could be compared to those of other countries.

18.
Hum Exp Toxicol ; 41: 9603271221106336, 2022.
Article in English | MEDLINE | ID: mdl-35675544

ABSTRACT

In water, sodium dichloroisocyanurate (NaDCC), a source for chlorine gas generation, releases free available chlorine in the form of hypochlorous acid, a strong oxidizing agent. NaDCC has been used as a disinfectant in humidifiers; however, its inhalation toxicity is a concern. Seven-week-old rats were exposed to NaDCC doses of 100, 500, and 2500 µg·kg-1 body weight by intratracheal instillation (ITI) to investigate pulmonary toxicity. The rats were sacrificed at 1 d (exposure group) or 14 d (recovery group) after ITI. Despite a slight decrease in body weight after exposure, there was no statistically significant difference between the control and NaDCC-treated groups. A significant increase in the total protein level of the bronchoalveolar lavage fluid (BALF) was observed in the exposure groups. Lactate dehydrogenase leakage into the BALF increased significantly (p < 0.01) in the exposure groups; however, recovery was observed after 14 d. The measurement of cytokines in the BALF samples indicated a significant increase in interleukin (IL)-6 in the exposure group and IL-8 in the recovery group. Histopathological examination revealed inflammatory foci and pulmonary edema around the terminal bronchioles and alveoli. This study demonstrated that ITI of NaDCC induced reversible pulmonary edema and inflammation without hepatic involvement in rats.


Subject(s)
Lung Diseases , Pulmonary Edema , Animals , Body Weight , Bronchoalveolar Lavage Fluid , Lung/pathology , Pulmonary Edema/pathology , Rats , Rats, Sprague-Dawley , Triazines
19.
In Vivo ; 36(4): 1710-1717, 2022.
Article in English | MEDLINE | ID: mdl-35738595

ABSTRACT

BACKGROUND/AIM: Inhalation toxicity tests of glycolic acid, which is used in many household products, have been reported, but the pulmonary toxicity of glycolic-acid has not been confirmed. Here, the lung damage caused by glycolic acid was investigated in rats. MATERIALS AND METHODS: An intratracheal instillation test was performed with glycolic acid in male rats. Bronchoalveolar lavage fluid (BALF) and histopathological analysis were conducted to identify the pulmonary toxicities. RESULTS: Intratracheal instillation of glycolic acid caused weight loss in animals and increased the content of lactate dehydrogenase, total protein, polymorphonuclear neutrophils, and inflammatory cytokines in BALF. In addition, pulmonary edema, alveolar/interstitial inflammation, and necrosis and desquamation of bronchial/bronchiolar epithelia were confirmed via histopathological examination. CONCLUSION: Exposure to glycolic acid can be harmful and toxic to the lungs.


Subject(s)
Glycolates , Lung , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Glycolates/toxicity , Lung/pathology , Male , Rats
20.
Chemosphere ; 294: 133549, 2022 May.
Article in English | MEDLINE | ID: mdl-35066077

ABSTRACT

Di (2-ethylhexyl) phthalate (DEHP), classified as a reproductive toxicant, is a ubiquitous pollutant in foodstuffs, dust, and commercial products. In this study, to provide a useful cross-check on the accuracy of the exposure assessment, the estimated daily intake of DEHP was compared using reverse dosimetry with a physiologically-based pharmacokinetic (PBPK) model and a scenario-based probabilistic estimation model for six subpopulations in Korea. For reverse dosimetry analysis, the concentrations of urinary DEHP metabolites, namely mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl)phthalate (MEOHP), from three human biomonitoring program datasets were used. For the scenario-based model, we evaluated the various exposure sources of DEHP, including diet, air, indoor dust, soil, and personal care products (PCPs), and also determined its levels based on the literature review and measurements of indoor dust. The DEHP exposure doses using both exposure assessment approaches were similar in all cases, except for the 95th percentile exposure doses in toddlers (1-2 years) and young children (3-6 years). The PBPK-reverse dosimetry estimated daily intakes at the 95th percentile ranged between 22.53 and 29.90 µg/kg/day for toddlers and young children. These exceeded the reference dose (RfD) of 20 µg/kg bw/day of the US Environmental Protection Agency (EPA) based on the increased relative liver weight. Although, food was considered the primary source of DEHP, contributing to a total exposure of 50.8-75.1%, the effect of exposure to indoor dust should not be overlooked. The occurrence of high levels of DEHP in indoor dust collected from Korean homes suggests the use of a wide variety of consumer products containing DEHP. Furthermore, more attention should be paid to the high exposure levels of DEHP, especially in young children. Therefore, it is necessary to perform continuous monitoring of the indoor dust, consumer products, and the body burden of children.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Child, Preschool , Diethylhexyl Phthalate/metabolism , Dust/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Humans , Phthalic Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL