Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Immunol ; 23(10): 1495-1506, 2022 10.
Article in English | MEDLINE | ID: mdl-36151395

ABSTRACT

The immune system can eliminate tumors, but checkpoints enable immune escape. Here, we identify immune evasion mechanisms using genome-scale in vivo CRISPR screens across cancer models treated with immune checkpoint blockade (ICB). We identify immune evasion genes and important immune inhibitory checkpoints conserved across cancers, including the non-classical major histocompatibility complex class I (MHC class I) molecule Qa-1b/HLA-E. Surprisingly, loss of tumor interferon-γ (IFNγ) signaling sensitizes many models to immunity. The immune inhibitory effects of tumor IFN sensing are mediated through two mechanisms. First, tumor upregulation of classical MHC class I inhibits natural killer cells. Second, IFN-induced expression of Qa-1b inhibits CD8+ T cells via the NKG2A/CD94 receptor, which is induced by ICB. Finally, we show that strong IFN signatures are associated with poor response to ICB in individuals with renal cell carcinoma or melanoma. This study reveals that IFN-mediated upregulation of classical and non-classical MHC class I inhibitory checkpoints can facilitate immune escape.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors , Immune Evasion , Interferon-gamma/genetics , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily C
2.
Nature ; 622(7984): 850-862, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794185

ABSTRACT

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Subject(s)
Immunotherapy , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy/methods , Interferons/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
3.
Nature ; 595(7866): 309-314, 2021 07.
Article in English | MEDLINE | ID: mdl-33953401

ABSTRACT

Epigenetic dysregulation is a defining feature of tumorigenesis that is implicated in immune escape1,2. Here, to identify factors that modulate the immune sensitivity of cancer cells, we performed in vivo CRISPR-Cas9 screens targeting 936 chromatin regulators in mouse tumour models treated with immune checkpoint blockade. We identified the H3K9 methyltransferase SETDB1 and other members of the HUSH and KAP1 complexes as mediators of immune escape3-5. We also found that amplification of SETDB1 (1q21.3) in human tumours is associated with immune exclusion and resistance to immune checkpoint blockade. SETDB1 represses broad domains, primarily within the open genome compartment. These domains are enriched for transposable elements (TEs) and immune clusters associated with segmental duplication events, a central mechanism of genome evolution6. SETDB1 loss derepresses latent TE-derived regulatory elements, immunostimulatory genes, and TE-encoded retroviral antigens in these regions, and triggers TE-specific cytotoxic T cell responses in vivo. Our study establishes SETDB1 as an epigenetic checkpoint that suppresses tumour-intrinsic immunogenicity, and thus represents a candidate target for immunotherapy.


Subject(s)
Gene Silencing , Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/genetics , Neoplasms/immunology , Animals , Antigens, Viral/immunology , CRISPR-Cas Systems/genetics , Chromatin/genetics , Chromatin/metabolism , DNA Transposable Elements/genetics , Disease Models, Animal , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology
4.
Biophys J ; 120(4): 618-630, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33460594

ABSTRACT

Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved.


Subject(s)
Lipid Bilayers , Peptides , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Protein Structure, Secondary
5.
J Am Chem Soc ; 141(16): 6706-6718, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30916949

ABSTRACT

Using synthetic molecular evolution, we previously discovered a family of peptides that cause macromolecular poration in synthetic membranes at low peptide concentration in a way that is triggered by acidic pH. To understand the mechanism of action of these "pHD peptides", here we systematically explored structure-function relationships through measurements of the effect of pH and peptide concentration on membrane binding, peptide structure, and the formation of macromolecular-sized pores in membranes. Both AFM and functional assays demonstrate the peptide-induced appearance of large pores in bilayers. Pore formation has a very steep pH dependence and is also dependent on peptide concentration. In vesicles, 50% leakage of 40 kDa dextrans occurs at 1 bound peptide per 1300 lipids or only 75 peptides per vesicle, an observation that holds true across a wide range of acidic pH values. The major role of pH is to regulate the amount of peptide bound per vesicle. The physical chemistry and sequence of the pHD peptides affect their potency and pH dependence; therefore, the sequence-structure-function relationships described here can be used for the future design and optimization of membrane permeabilizing peptides for specific applications.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Peptides/metabolism , Amino Acid Sequence , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Peptides/chemistry , Phosphatidylcholines/chemistry , Protein Structure, Secondary
6.
J Am Chem Soc ; 140(20): 6441-6447, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29694775

ABSTRACT

Pore-forming peptides with novel functions have potential utility in many biotechnological applications. However, the sequence-structure-function relationships of pore forming peptides are not understood well enough to empower rational design. Therefore, in this work, we used synthetic molecular evolution to identify a novel family of peptides that are highly potent and cause macromolecular poration in synthetic lipid vesicles at low peptide concentration and at neutral pH. These unique 26-residue peptides, which we call macrolittins, release macromolecules from lipid bilayer vesicles made from zwitterionic PC lipids at peptide to lipid ratios as low as 1:1000, a property that is almost unprecedented among known membrane permeabilizing peptides. The macrolittins exist as membrane-spanning α-helices. They cause dramatic bilayer thinning and form large pores in planar supported bilayers. The high potency of these peptides is likely due to their ability to stabilize bilayer edges by a process that requires specific electrostatic interactions between peptides.


Subject(s)
Lipid Bilayers/metabolism , Peptides/chemistry , Peptides/pharmacology , Permeability/drug effects , Amino Acid Sequence , Hydrogen-Ion Concentration , Models, Molecular , Peptide Library , Phospholipids/metabolism , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology
7.
J Am Chem Soc ; 139(2): 937-945, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28001058

ABSTRACT

pH-triggered membrane-permeabilizing peptides could be exploited in a variety of applications, such as to enable cargo release from endosomes for cellular delivery, or as cancer therapeutics that selectively permeabilize the plasma membranes of malignant cells. Such peptides would be especially useful if they could enable the movement of macromolecules across membranes, a rare property in membrane-permeabilizing peptides. Here we approach this goal by using an orthogonal high-throughput screen of an iterative peptide library to identify peptide sequences that have the following two properties: (i) little synthetic lipid membrane permeabilization at physiological pH 7 at high peptide concentration and (ii) efficient formation of macromolecule-sized defects in synthetic lipid membranes at acidic pH 5 and low peptide concentration. The peptides we selected are remarkably potent macromolecular sized pore-formers at pH 5, while having little or no activity at pH 7, as intended. The action of these peptides likely relies on tight coupling between membrane partitioning, α-helix formation, and electrostatic repulsions between acidic side chains, which collectively drive a sharp pH-triggered transition between inactive and active configurations with apparent pKa values of 5.5-5.8. This work opens new doors to developing applications that utilize peptides with membrane-permeabilizing activities that are triggered by physiologically relevant decreases in pH.


Subject(s)
Lipid Bilayers/chemistry , Models, Biological , Peptides/chemistry , Hydrogen-Ion Concentration , Particle Size , Peptide Library , Porosity
8.
STAR Protoc ; 4(1): 102082, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36861834

ABSTRACT

Recognition of Cas9 and other proteins encoded in delivery vectors has limited CRISPR technology in vivo. Here, we present a protocol for genome engineering using selective CRISPR antigen removal (SCAR) lentiviral vectors in Renca mouse model. This protocol describes how to conduct an in vivo genetic screen with a sgRNA library and SCAR vectors that can be applied to different cell lines and contexts. For complete details on the use and execution of this protocol, please refer to Dubrot et al. (2021).1.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Mice , Animals , CRISPR-Cas Systems/genetics , Gene Library , Genome , Cell Line
9.
Biochem Pharmacol ; 193: 114769, 2021 11.
Article in English | MEDLINE | ID: mdl-34543656

ABSTRACT

Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.


Subject(s)
Bees/genetics , Bees/physiology , Melitten/genetics , Melitten/metabolism , Animals , Gene Expression Regulation/physiology , Melitten/chemistry , Phylogeny , Protein Conformation
10.
Sci Rep ; 8(1): 16326, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397235

ABSTRACT

Cognitive flexibility, the adaptation of representations and responses to new task demands, improves dramatically in early childhood. It is unclear, however, whether flexibility is a coherent, unitary cognitive trait, or is an emergent dimension of task-specific performance that varies across populations with divergent experiences. Three- to 5-year-old English-speaking U.S. children and Tswana-speaking South African children completed two distinct language-processing cognitive flexibility tests: the FIM-Animates, a word-learning test, and the 3DCCS, a rule-switching test. U.S. and South African children did not differ in word-learning flexibility but showed similar age-related increases. In contrast, U.S. preschoolers showed an age-related increase in rule-switching flexibility but South African children did not. Verbal recall explained additional variance in both tests but did not modulate the interaction between population sample (i.e., country) and task. We hypothesize that rule-switching flexibility might be more dependent upon particular kinds of cultural experiences, whereas word-learning flexibility is less cross-culturally variable.


Subject(s)
Cognition , Culture , Executive Function , Aging/physiology , Child, Preschool , Female , Humans , Male , Mental Recall/physiology
SELECTION OF CITATIONS
SEARCH DETAIL