ABSTRACT
Liquid mobility is ubiquitous in nature, with droplets emerging at all size scales, and artificial surfaces have been designed to mimic such mobility over the past few decades. Meanwhile, millimeter-sized droplets are frequently used for wettability characterization, even with facial mask applications, although these applications have a droplet-size target range that spans from millimeters to aerosols measuring less than a few micrometers. Unlike large droplets, microdroplets can interact sensitively with the fibers they contact with and are prone to evaporation. However, wetting behaviors at the single-microfiber level remain poorly understood. Herein, we characterized the wettability of fibrous layers, which revealed that a multiscale landscape of droplets ranged from the millimeter to the micrometer scale. The contact angle (CA) values of small droplets on pristine fibrous media showed sudden decrements, especially on a single microfiber, owing to the lack of air cushions for the tiny droplets. Moreover, droplets easily adhered to the pristine layer during droplet impact tests and then yielding widespread areas of contamination on the microfibers. To resolve this, we carved nanowalls on the pristine fibers by plasma etching, which effectively suppressed such wetting phenomena. Significantly, the resulting topographies of the microfibers managed the dynamic wettability of droplets at the multiscale, which reduced the probability of contamination with impact droplets and suppressed the wetting transition upon evaporation. These findings for the dynamic wettability of fibrous media will be useful in the fight against infectious droplets.
Subject(s)
Masks , Wettability , Physical PhenomenaABSTRACT
Atopic dermatitis (AD) treatment has largely relied on non-specific broad immunosuppressants despite their long-term toxicities until the approval of dupilumab, which blocks IL-4 signaling to target Th2 cell responses. Here, we report the discovery of compound 4aa, a novel compound derived from the structure of chlorophyll a, and the efficacy of chlorophyll a to alleviate AD symptoms by oral administration in human AD patients. 4aa downregulated GATA3 and IL-4 in differentiating Th2 cells by potently blocking IL-4 receptor dimerization. In the murine model, oral administration of 4aa reduced the clinical severity of symptoms and scratching behavior by 76% and 72%, respectively. Notably, the elevated serum levels of Th2 cytokines reduced to levels similar to those in the normal group after oral administration of 4aa. Additionally, the toxicological studies showed favorable safety profiles and good tolerance. In conclusion, 4aa may be applied for novel therapeutic developments for patients with AD.
Subject(s)
Dermatitis, Atopic , Humans , Mice , Animals , Dermatitis, Atopic/drug therapy , Th2 Cells , Chlorophyll A , Interleukin-4 , Cytokines , Cell DifferentiationABSTRACT
Gemcitabine is a nucleoside analog widely used as an anticancer agent against several types of cancer. Although gemcitabine sometimes shows excellent effectiveness, cancer cells are often poorly responsive to or resistant to the drug. Recently, specific strains or dysbiosis of the human microbiome were correlated with drug reactivity and resistance acquisition. Therefore, we aimed to identify antibiotic compounds that can modulate the microbiome to enhance the responsiveness to gemcitabine. To achieve this, we confirmed the gemcitabine responsiveness based on public data and conducted drug screening on a set of 250 antibiotics compounds. Subsequently, we performed experiments to investigate whether the selected compounds could enhance the responsiveness to gemcitabine. First, we grouped a total of seven tumor cell lines into resistant and sensitive group based on the IC50 value (1 µM) of gemcitabine obtained from the public data. Second, we performed high-throughput screening with compound treatments, identifying seven compounds from the resistant group and five from the sensitive group based on dose dependency. Finally, the combination of the selected compound, puromycin dihydrochloride, with gemcitabine in gemcitabine-resistant cell lines resulted in extensive cell death and a significant increase in cytotoxic efficacy. Additionally, mRNA levels associated with cell viability and stemness were reduced. Through this study, we screened antibiotics to further improve the efficacy of existing anticancer drugs and overcome resistance. By combining existing anticancer agents and antibiotic substances, we hope to establish various drug combination therapies and ultimately improve cancer treatment efficacy.
Subject(s)
Anti-Bacterial Agents , Deoxycytidine , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gemcitabine , High-Throughput Screening Assays , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Humans , High-Throughput Screening Assays/methods , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Puromycin/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Drug Synergism , Antineoplastic Agents/pharmacology , Small Molecule Libraries/pharmacologyABSTRACT
Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.
Subject(s)
Fasting , Mitochondria , Peroxisome-Targeting Signal 1 Receptor , Zebrafish , Animals , Humans , Autophagy/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/metabolism , Peroxisomes/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Peroxisome-Targeting Signal 1 Receptor/genetics , Peroxisome-Targeting Signal 1 Receptor/metabolismABSTRACT
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) has been frequently overexpressed in many types of malignancy, suggesting its oncogenic function. It recognizes phosphorylated serine or threonine (pSer/Thr) of a target protein and isomerizes the adjacent proline (Pro) residue, thereby altering folding, subcellular localization, stability, and function of target proteins. The oncogenic transcription factor, Nrf2 harbors the pSer/Thr-Pro motif. This prompted us to investigate whether Pin1 could bind to Nrf2 and influence its stability and function in the context of implications for breast cancer development and progression. The correlation between Pin1 and Nrf2 in the triple-negative breast cancer cells was validated by RNASeq analysis as well as immunofluorescence staining. Interaction between Pin1 and Nrf2 was assessed by co-immunoprecipitation and an in situ proximity ligation assay. We found that mRNA and protein levels of Pin1 were highly increased in the tumor tissues of triple-negative breast cancer patients and the human breast cancer cell line. Genetic or pharmacologic inhibition of Pin1 enhanced the ubiquitination and degradation of Nrf2. In contrast, the overexpression of Pin1 resulted in the accumulation of Nrf2 in the nucleus, without affecting its transcription. Notably, the phosphorylation of Nrf2 at serine 215, 408, and 577 is essential for its interaction with Pin1. We also identified phosphorylated Ser104 and Thr277 residues in Keap1, a negative regulator of Nrf2, for Pin1 binding. Pin1 plays a role in breast cancer progression through stabilization and constitutive activation of Nrf2 by competing with Keap1 for Nrf2 binding.
Subject(s)
Breast Neoplasms/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplasm Proteins/metabolism , Animals , Breast Neoplasms/genetics , Female , HEK293 Cells , Humans , MCF-7 Cells , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Neoplasm Proteins/genetics , Protein Binding , Protein Stability , Proteolysis , UbiquitinationABSTRACT
OBJECTIVE: To investigate the molecular characteristics of AGEJ compared with EAC and gastric adenocarcinoma. SUMMARY OF BACKGROUND DATA: Classification of AGEJ based on differential molecular characteristics between EAC and gastric adenocarcinoma has been long-standing controversy but rarely conducted due to anatomical ambiguity and epidemiologic difference. METHODS: The molecular classification model with Bayesian compound covariate predictor was developed based on differential mRNA expression of EAC (N = 78) and GCFB (N = 102) from the Cancer Genome Atlas (TCGA) cohort. AGEJ/cardia (N = 48) in TCGA cohort and AGEJ/upper third GC (N = 46 pairs) in Seoul National University cohort were classified into the EAC-like or GCFB-like groups whose genomic, transcriptomic, and proteomic characteristics were compared. RESULTS: AGEJ in both cohorts was similarly classified as EAC-like (31.2%) or GCFB-like (68.8%) based on the 400-gene classifier. The GCFB-like group showed significantly activated phosphoinositide 3-kinase-AKT signaling with decreased expression of ERBB2. The EAC-like group presented significantly different alternative splicing including the skipped exon of RPS24, a significantly higher copy number amplification including ERBB2 amplification, and increased protein expression of ERBB2 and EGFR compared with GCFB-like group. High-throughput 3D drug test using independent cell lines revealed that the EAC-like group showed a significantly better response to lapatinib than the GCFB-like group (P = 0.015). CONCLUSIONS: AGEJ was the combined entity of the EAC-like and GCFB-like groups with consistently different molecular characteristics in both Seoul National University and TCGA cohorts. The EAC-like group with a high Bayesian compound covariate predictor score could be effectively targeted by dual inhibition of ERBB2 and EGFR.
Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Stomach Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Bayes Theorem , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophagogastric Junction/pathology , Humans , Phosphatidylinositol 3-Kinases , Proteomics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathologyABSTRACT
Patients with chronic itch describe their pruritus in a wide variety of ways. However, these subjective descriptions are often not taken into consideration by physicians. This study aimed to validate patients' descriptions of pruritus, and to investigate the relationship between various descriptions of pruritus and the patient burden of chronic pruritus by examining the mediating effects of sleep disturbance and sexual dysfunction on patient's quality of life, as predicted by various descriptions of pruritus. Exploratory and confirmatory factor analyses were performed to identify the factor structure measured by 11 descriptions of pruritus. The study then analysed differences in the degree of sleep disturbance, sexual dysfunction, and quality of life deterioration factors using a structural equation modelling method. Using data from 419 patients with chronic pruritus, 11 descriptions of pruritus were classified into 2 groups: (i) sensory pruritus (i.e. stinging, stabbing, burning, painful, formication, throbbing, and cold) that are linked with descriptions of pruritus patterns; and (ii) affective pruritus (i.e. annoying, unbearable, worrisome, and warm) from patient reports of psychological or emotional distress. The study found that affective pruritus decreases patient's quality of life either directly or indirectly through sleep disturbance. In conclusion, clues about a patients' sleep disturbance or poor quality of life can be obtained through their descriptions of pruritus.
Subject(s)
Quality of Life , Sleep Wake Disorders , Humans , Latent Class Analysis , Pruritus/diagnosis , Pruritus/psychology , Sleep Wake Disorders/diagnosis , Paresthesia , PainABSTRACT
Polyhexamethylene guanidine phosphate (PHMG-P), a cationic biocide, is widely used in household products due to its strong bactericidal activity and low toxicity. However, it causes fatal lung damage when inhaled. In this study, we investigated why PHMG-P causes fatal lung injury when inhaled, and demonstrated that the disruption of membrane integrity through ionic interaction-a molecular initiating event of PHMG-P-determines toxicity. Mice were injected intravenously with 0.9 or 7.2 mg/kg PHMG-P (IV group), or instilled intratracheally with 0.9 mg/kg PHMG-P (ITI group); they were euthanatized at 4 h and on days 1 and 7 after treatment. Increased total BAL cell count and proinflammatory cytokine production, along with fibrotic changes in the lungs, were detected in the ITI group only. Levels of hepatic enzymes and hepatic serum amyloid A mRNA expression were markedly upregulated in the 7.2 mg/kg IV and ITI groups at 4 h or day 1 after treatment, but returned to baseline. No pathological findings were detected in the heart, liver, or kidneys. To simulate the IV injection, A549, THP-1, and HepG2 cells were treated with PHMG-P in cell culture media supplemented with different serum concentrations. Increased serum concentration was associated with an increase in cell viability. These results support the idea that direct contact between PHMG-P and cell membranes is necessary for PHMG-induced toxicity.
Subject(s)
Disinfectants , Lung Injury , Animals , Disinfectants/toxicity , Guanidines/toxicity , Lung/pathology , Lung Injury/pathology , MiceABSTRACT
BACKGROUND: Hypertension (HTN), diabetes mellitus (DM), and dyslipidemia (DL) are well-known risk factors of cardiovascular disease (CVD), but not all patients develop CVDs. Studies have been limited investigating genetic risk of CVDs specific to individuals with metabolic diseases. This study aimed to identify disease-specific and/or common genetic loci associated with CVD susceptibility in chronic metabolic disease patients. METHODS: We conducted a genome-wide association study (GWAS) of a multiple case-control design with data from the City Cohort within Health EXAminees subcohort of the Korean Genome and Epidemiology Study (KoGES_HEXA). KoGES_HEXA is a population-based prospective cohort of 173,357 urban Korean adults that had health examinations at medical centers. 42,393 participants (16,309 HTN; 5,314 DM; 20,770 DL) were analyzed, and each metabolic disease group was divided into three CVD case-controls: coronary artery disease (CAD), ischemic stroke (IS), and cardio-cerebrovascular disease (CCD). GWASs were conducted for each case-control group with 7,975,321 imputed single nucleotide polymorphisms using the Phase 3 Asian panel from 1000 Genomes Project, by logistic regression and controlled for confounding variables. Genome-wide significant levels were implemented to identify important susceptibility loci. RESULTS: Totaling 42,393 individuals, this study included 16,309 HTN (mean age [SD], 57.28 [7.45]; 816 CAD, 398 IS, and 1,185 CCD cases), 5,314 DM (57.79 [7.39]; 361 CAD, 153 IS, and 497 CCD cases), and 20,770 DL patients (55.34 [7.63]; 768 CAD, 295 IS, and 1,039 CCD cases). Six genome-wide significant CVD risk loci were identified, with relatively large effect sizes: 1 locus in HTN (HTN-CAD: 17q25.3/CBX8-CBX4 [OR, 2.607; P = 6.37 × 10-9]), 2 in DM (DM-IS: 4q32.3/MARCH1-LINC01207 [OR, 5.587; P = 1.34 × 10-8], and DM-CCD: 17q25.3/RPTOR [OR, 3.511; P = 1.99 × 10-8]), and 3 in DL (DL-CAD: 9q22.2/UNQ6494-LOC101927847 [OR, 2.282; P = 7.78 × 10-9], DL-IS: 3p22.1/ULK4 [OR, 2.162; P = 2.97 × 10-8], and DL-CCD: 2p22.2/CYP1B1-CYP1B1-AS1 [OR, 2.027; P = 4.24 × 10-8]). CONCLUSIONS: This study identified 6 susceptibility loci and positional candidate genes for CVDs in HTN, DM, and DL patients using an unprecedented study design. 1 locus (17q25.3) was commonly associated with CAD. These associations warrant validation in additional studies for potential therapeutic applications.
Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus , Dyslipidemias , Hypertension , Adult , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Dyslipidemias/complications , Dyslipidemias/genetics , Genome-Wide Association Study , Humans , Hypertension/complications , Hypertension/genetics , Ligases , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Prospective Studies , Protein Serine-Threonine Kinases , Risk FactorsABSTRACT
Capillary water bridges clogged in the holes of mesh-type fog harvesters have previously been considered only as a drawback because they decrease fog-harvesting yield by hindering airflow in front of the clogged mesh in the usual wind conditions. In this study, we show that the role of a clogged water bridge may not be entirely negative and can contribute to increased fog harvesting by increasing the effective shade coefficient in a special condition with high fog inertia. As the fog speed close to the mesh or the plate increases, clogged mesh as well as the impermeable solid plate are found to produce high fog-harvesting efficiency owing to the high inertia of fog particles that impact the blocked wall. For fast fog speeds (â¼4 m s-1) near the mesh, our results show that the fog-harvesting efficiency is proportional to the effective shade coefficient because fog flow circumventing the mesh is limited owing to high fog inertia. We analyzed the clogging effect on fog-harvesting performance by distinguishing between self-clogging and non-self-clogging patterns based on the water bridge stability clogged in mesh holes.
ABSTRACT
BACKGROUND: The Janus-III measurement system evaluates the overall skin characteristics such as skin pore, wrinkle, sebum, porphyrin, skin pigmentation, and skin color using high-resolution facial images. The values are measured from five different facial areas, namely, the forehead, nose, corner of/skin below the eyes, and cheeks. Owing to its convenience and diverse measuring characteristics, Janus-III has been widely used in skin research and the cosmetic industry in Korea. In our previous study, we revealed the consistency and reliability of the system with repeatedly measured values. Its measuring performance was investigated statistically, but to make it more reliable for academic skin research, additional verification by a professional dermatologist is needed. MATERIALS AND METHODS: In this study, we conducted comparative analysis of three skin characteristics (pigmented spot, skin color, and eye wrinkle) by a dermatologist and the Janus-III measurement system. We utilized 330 image data that were cropped from the whole facial images of 330 different participants to avoid correlation among the three measuring items. Pearson's correlation coefficient exhibited similar patterns between the system and the dermatologist's findings. RESULTS: The main finding of our study was that the measured value of skin characteristics by the Janus-III system showed clear correlation with the values evaluated by a dermatologist, especially in a pigmented spot. CONCLUSION: Therefore, it would be a plausible idea to consider the Janus-III system for specialized research of skin characteristics even with a small sample size.
Subject(s)
Dermatologists , Skin Aging , Humans , Reproducibility of Results , Skin , Skin PigmentationABSTRACT
In an internet of things (IoT) platform with a copious number of IoT devices and active variation of operational purpose, IoT devices should be able to dynamically change their system images to play various roles. However, the employment of such features in an IoT platform is hindered by several factors. Firstly, the trivial file transfer protocol (TFTP), which is generally used for network boot, has major security vulnerabilities. Secondly, there is an excessive demand for the server during the network boot, since there are numerous IoT devices requesting system images according to the variation of their roles, which exerts a heavy network overhead on the server. To tackle these challenges, we propose a system termed FLEX-IoT. The proposed system maintains a FLEX-IoT orchestrater which uses an IoT platform operation schedule to flexibly operate the IoT devices in the platform. The IoT platform operation schedule contains the schedules of all the IoT devices on the platform, and the FLEX-IoT orchestrater employs this schedule to flexibly change the mode of system image transfer at each moment. FLEX-IoT consists of a secure TFTP service, which is fully compatible with the conventional TFTP, and a resource-efficient file transfer method (adaptive transfer) to streamline the system performance of the server. The proposed secure TFTP service comprises of a file access control and attacker deception technique. The file access control verifies the identity of the legitimate IoT devices based on the hash chain shared between the IoT device and the server. FLEX-IoT provides security to the TFTP for a flexible IoT platform and minimizes the response time for network boot requests based on adaptive transfer. The proposed system was found to significantly increase the attack-resistance of TFTP with little additional overhead. In addition, the simulation results show that the volume of transferred system images on the server decreased by 27% on average, when using the proposed system.
ABSTRACT
Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.
Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Adipose Tissue/metabolism , Animal Nutritional Physiological Phenomena , Animals , Animals, Genetically Modified , Cell Shape , Green Fluorescent Proteins/metabolism , Larva/genetics , Larva/metabolism , Promoter Regions, Genetic/genetics , Transgenes , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolismABSTRACT
Supported with significant rejuvenating and regenerating actions of mesenchymal stem cells (MSCs) in various gastrointestinal diseases including Helicobacter pylori (H. pylori)-associated gastric diseases, we have compared these actions among placenta derived-MSCs (PD-MSCs), umbilical cord derived-MSCs (UC-MSCs), and adipose tissue derived-MSCs (AD-MSCs) and explored contributing genes implicated in rejuvenation of H. pylori-chronic atrophic gastritis (CAG) and tumorigenesis. In this study adopting H. pylori-initiated, high salt diet-promoted gastric carcinogenesis model, we have administered three kinds of MSCs around 15-18 weeks in H. pylori infected C57BL/6 mice and sacrificed at 24 and 48 weeks, respectively, in order to either assess the rejuvenating capability or anti-tumorigenesis. At 24 weeks, MSCs all led to significantly mitigated atrophic gastritis, for which significant inductions of autophagy, preservation of tumor suppressive 15-PGDH, attenuated apoptosis, and efficient efferocytosis was imposed with MSCs administration during atrophic gastritis. At 48 weeks, MSCs administered during H. pylori-associated atrophic gastritis afforded significant blocking the progression of CAG, as evidenced with statistically significant reduction in H. pylori-associated gastric tumor (p<0.05) accompanied with significant decreases in IL-1ß, COX-2, STAT3, and NF-κB. Combined together with the changes of stanniocalcin-1 (STC-1), thrombospondin-1 (TSP-1), and IL-10 known as biomarkers reflecting stem cell activities at 48 weeks after H. pylori, PD-MSCs among MSCs afforded the best rejuvenating action against H. pylori-associated CAG via additional actions of efferocytosis, autophagy, and anti-apoptosis at 24 weeks. In conclusion, MSCs, especially PD-MSCs, exerted rejuvenating actions against H. pylori-associated CAG via anti-mutagenesis of IL-10, CD-36, ATG5 and cancer suppressive influences of STC-1, TSP-1, and 15-PGDH.
ABSTRACT
Gut bacteria might contribute in early stage of colorectal cancer through the development and advancement of colon adenoma, by which exploring either beneficial bacteria, which are decreased in formation or advancement of colon adenoma and harmful bacteria, which are increased in advancement of colon adenoma may result in implementation of dietary interventions or probiotic therapies to functional means for prevention. Korean fermented kimchi is one of representative probiotic food providing beneficiary microbiota and exerting significant inhibitory outcomes in both APC/Min+ polyposis model and colitis-associated cancer. Based on these backgrounds, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers with normal colon, simple adenoma, and advanced colon adenoma with 10 weeks of fermented kimchi intake. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into Operational Taxonomic Units using VSEARCH and the Chao Indices, an estimator of richness of taxa per individual, were estimated to measure the diversity of each sample. Though significant difference in α or ß diversity was not seen between three groups, kimchi intake significantly led to significant diversity of fecal microbiome. After genus analysis, Acinobacteria, Cyanobacteria, Clostridium sensu, Turicibacter, Gastronaeophillales, H. pittma were proven to be increased in patients with advanced colon adenoma, whereas Enterococcua Roseburia, Coryobacteriaceau, Bifidobacterium spp., and Akkermansia were proven to be significantly decreased in feces from patients with advanced colon adenoma after kimchi intake. Conclusively, fermented kimchi plentiful of beneficiary microbiota can afford significant inhibition of either formation or advancement of colon adenoma.
ABSTRACT
Korean fermented kimchi is probiotic food preventing Helicobacter pylori (H. pylori)-associated atrophic gastritis in both animal and human trial. In order to reveal the effect of fermented kimchi against H. pylori infection, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers (H. pylori (-) chronic superficial gastritis (CSG), H. pylori (+) CSG, and H. pylori (+) chronic atrophic gastritis (CAG) with 10 weeks kimchi. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into operational taxonomic units using VSEARCH and the Chao, Simpson, and Shannon Indices. Though significant difference in α- or ß-diversity was not seen in three groups, kimchi intake led to significant diversity of fecal microbiome. As results, Klebsiella, Enterococcus, Ruminococcaceae, Streptococcus, Roseburia, and Clostirdiumsensu were significantly increased in H. pylori (+) CAG, while Akkermansia, Citrobacter, and Lactobacillus were significantly decreased in H. pylori (+) CAG. With 10 weeks of kimchi administration, Bifidobacterium, Lactobacillus, and Ruminococcus were significantly increased in H. pylori (+) CAG, whereas Bacteroides, Subdoligranulum, and Eubacterium coprostanolines were significantly decreased in H. pylori (-) CAG. 10 weeks of kimchi intake significantly improved pepsinogen I/II ratio (p<0.01) with significant decreases in interleukin-1ß. Conclusively, fermented kimchi significantly changed fecal microbiota to mitigate H. pylori-associated atrophic gastritis.
ABSTRACT
Dietary intervention to prevent Helicobacter pylori (H. pylori)-associated gastric diseases seems to be ideal with no risk of bacterial resistance, safe long-term intervention, and correcting pathogenic mechanisms including rejuvenation of precancerous atrophic gastritis and anti-mutagenesis. A transcriptome as set of all RNAs transcribed by certain tissues or cells demonstrates gene functions and reveals the molecular mechanism of specific biological processes against diseases. Here, we have performed RNAseq and bioinformatic analysis to explain proof of concept that walnut intake can rescue from H. pylori infection and explore unidentified mode of actions of walnut polyphenol extract (WPE). As results, BIRC3, SLC25A4, f3 transcription, VEGFA, AZU1, HMOX1, RAB3A, RELBTNIP1, ETFB, INPP5J, PPME1, RHOB, TPI1, FOSL1, JUND.RELB, KLF2, MUC1, NDRG1, ALDOA, ENO1, PFKP, GPI, GDF15, and NRTN genes were newly discovered to be enriched with WPE, whereas CCR4, BLNK, CCR7, CXCR4, CDO1, KLSG1, SELE, RASGRP2, PIK3R3, TSPAN32, HOXC-AS3, HCG8, BTNL8, and CXCL3 genes as inhibitory targets by WPE in H. pylori infection. We identified additional genes what WPE afforded actions of avoiding H. pylori-driven onco-inflammation and rejuvenating precancerous atrophic gastritis. Conclusively, after applying RNAseq analysis in order to document walnut intake for precision medicine against H. pylori infection, significant transcriptomic profiling applicable for validation were drawn.
ABSTRACT
Dietary intervention to prevent Helicobacter pylori (H. pylori)-gastric cancer might be ideal by long-term intervention, rejuvenating action, and no risk of bacterial resistance. Stimulated with finding that kimchi prevented H. pylori-gastric cancer, we compared the efficacy of cancer preventive kimchi (cpkimchi) and standard recipe kimchi (skimchi) and the efficacy between fermented kimchi and non-fermented kimchi (kimuchi) in H. pylori-initiated gastric cancer model and explored novel mechanisms hinted from RNAseq transcriptome analysis. Animal models assessing gastric pathology on 24 and 36 weeks after H. pylori initiated, salt diet-promoted gastric mutagenesis model showed fermented cpkimchi afforded the best outcome of either rejuvenating atrophic gastritis or inhibiting tumorigenesis compared to skimchi and kimuchi. Highest inhibition of atrophic gastritis was achieved with cpkimchi, while significantly lower in kimuchi. Transcriptomic analysis showed ameliorated-endoplasmic reticulum (ER) stress, -oxidative stress, and -apoptosis as major rejuvenating action of cpkimchi. Homogenates from animal model showed that elevated expressions of p-PERK, IRE, ATF6, p-elf, and XBP1 in control group, while significantly decreased with dietary intake of only cpkimchi. Significantly increased expressions of HO-1 and γ-GCS were only noted with cpkimchi. Conclusively, long-term dietary intervention of fermented cpkimchi can be potential way preventing H. pylori-associated carcinogenesis via rejuvenation of atrophic gastritis.
ABSTRACT
BACKGROUND & AIMS: Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice. METHODS: We used laser microdissection to enrich epithelial cells from K19-C2mE transgenic mice, which spontaneously develop gastritis-associated hyperplasia, and Gan mice, which express activated prostaglandin E2 and Wnt in the gastric mucosa and develop gastric tumors. We measured expression of epithelial cell-enriched microRNAs and used bioinformatics analyses to integrate data from different systems to identify inflammation-associated microRNAs. We validated our findings in gastric tissues from mice and evaluated protein functions in gastric cell lines (SNU-719, SNU-601, SNU-638, AGS, and GIF-14) and knockout mice. Organoids were cultured from gastric corpus tissues of wild-type and miR-135b-knockout C57BL/6 mice. We measured levels of microRNAs in pairs of gastric tumors and nontumor mucosa from 28 patients in Japan. RESULTS: We found microRNA 135b (miR-135B) to be the most overexpressed microRNA in gastric tissues from K19-C2mE and Gan mice: levels increased during the early stages of gastritis-associated carcinogenesis. Levels of miR-135B were also increased in gastric tumor tissues from gp130F/F mice and patients compared with nontumor tissues. In gastric organoids and immortalized cell lines, expression of miR-135B was induced by interleukin 1 signaling. K19-C2mE mice with disruption of Mir-135b developed hyperplastic lesions that were 50% smaller than mice without Mir-135b disruption and had significant reductions in cell proliferation. Expression of miR-135B in gastric cancer cell lines increased their colony formation, migration, and sphere formation. We identified FOXN3 and RECK messenger RNAs (mRNAs) as targets of miR-135B; their knockdown reduced migration of gastric cancer cell lines. Levels of FOXN3 and RECK mRNAs correlated inversely with levels of miR-135B in human gastric tumors and in inflamed mucosa from K19-C2mE mice. CONCLUSIONS: We found expression of miR-135B to be up-regulated by interleukin L1 signaling in gastric cancer cells and organoids. miR-135B promotes invasiveness and stem-cell features of gastric cancer cells in culture by reducing FOXN3 and RECK messenger RNAs. Levels of these messenger RNA targets, which encode tumor suppressor, are reduced in human gastric tumors.
Subject(s)
Carcinogenesis/genetics , Gastric Mucosa/pathology , Gastritis/genetics , Interleukin-1/metabolism , MicroRNAs/genetics , Stomach Neoplasms/genetics , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Forkhead Transcription Factors , GPI-Linked Proteins/genetics , Gastritis/complications , Gene Knockdown Techniques , Humans , Hyperplasia/genetics , Mice , MicroRNAs/metabolism , Organoids/metabolism , RNA, Messenger/metabolism , Repressor Proteins/genetics , Signal Transduction , Stomach Neoplasms/metabolism , Up-RegulationABSTRACT
The RNA binding proteins (RBPs) have multiple roles in human cancer. However, their molecular target and function have not been clearly identified. Our genomic analysis derived from patients reveals that NONO is a potential oncogenic gene in lung cancer. NONO is highly expressed in lung cancer tissues compared with normal tissues, and its expression has been correlated with the prognosis of lung cancer patients. We found that NONO significantly influences cancer cell proliferation in lung cancer. Gene expression profiles with NONO-depleted cells revealed that the sirtuin signaling pathway is highly correlated with NONO. Thus, NONO-silenced cells caused reduction of the TCA cycle and glycolysis metabolism. We identified that NONO regulated NAMPT, which is a well-known gene involved in sirtuin signaling, and NONO has a significant correlation with NAMPT in lung cancer patients. We propose that NONO modulates energy metabolism by direct interaction with NAMPT and suggest that a functional relationship between NONO and NAMPT contributes to lung cancer cell survival. Targeting the axis can be a promising approach for patient treatment in lung cancer.