Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Antimicrob Agents Chemother ; 68(5): e0136323, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526050

ABSTRACT

We subjected seven P. aeruginosa isolates to a 10-day serial passaging against five antipseudomonal agents to evaluate resistance levels post-exposure and putative resistance mechanisms in terminal mutants were analyzed by whole-genome sequencing analysis. Meropenem (mean, 38-fold increase), cefepime (14.4-fold), and piperacillin-tazobactam (52.9-fold) terminal mutants displayed high minimum inhibitory concentration (MIC) values compared to those obtained after exposure to ceftolozane-tazobactam (11.4-fold) and ceftazidime-avibactam (5.7-fold). Fewer isolates developed elevated MIC values for other ß-lactams and agents belonging to other classes when exposed to meropenem in comparison to other agents. Alterations in nalC and nalD, involved in the upregulation of the efflux pump system MexAB-OprM, were common and observed more frequently in isolates exposed to ceftazidime-avibactam and meropenem. These alterations, along with ones in mexR and amrR, provided resistance to most ß-lactams and levofloxacin but not imipenem. The second most common gene altered was mpl, which is involved in the recycling of the cell wall peptidoglycan. These alterations were mainly noted in isolates exposed to ceftolozane-tazobactam and piperacillin-tazobactam but also in one cefepime-exposed isolate. Alterations in other genes known to be involved in ß-lactam resistance (ftsI, oprD, phoP, pepA, and cplA) and multiple genes involved in lipopolysaccharide biosynthesis were also present. The data generated here suggest that there is a difference in the mechanisms selected for high-level resistance between newer ß-lactam/ß-lactamase inhibitor combinations and older agents. Nevertheless, the isolates exposed to all agents displayed elevated MIC values for other ß-lactams (except imipenem) and quinolones tested mainly due to alterations in the MexAB-OprM regulators that extrude these agents.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Meropenem , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination , Pseudomonas aeruginosa , Tazobactam , beta-Lactamase Inhibitors , beta-Lactams , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , beta-Lactamase Inhibitors/pharmacology , Azabicyclo Compounds/pharmacology , Meropenem/pharmacology , Tazobactam/pharmacology , Ceftazidime/pharmacology , beta-Lactams/pharmacology , Piperacillin, Tazobactam Drug Combination/pharmacology , Drug Combinations , Cephalosporins/pharmacology , Cefepime/pharmacology , Humans , Piperacillin/pharmacology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics
2.
Int J Antimicrob Agents ; 63(4): 107113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354826

ABSTRACT

BACKGROUND: Aztreonam-avibactam is under clinical development for treatment of infections caused by carbapenem-resistant Enterobacterales (CRE), especially those resistant to recently approved ß-lactamase inhibitor combinations (BLICs). OBJECTIVES: To evaluate a large collection of CRE isolates, including those non-susceptible to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam. METHODS: Overall, 24 580 Enterobacterales isolates were consecutively collected (1/patient) in 2020-2022 from 64 medical centres located in Western Europe (W-EU), Eastern Europe (E-EU), Latin America (LATAM), and the Asia-Pacific region (APAC). Of those, 1016 (4.1%) were CRE. Isolates were susceptibility tested by broth microdilution. CRE isolates were screened for carbapenemase genes by whole genome sequencing. RESULTS: Aztreonam-avibactam inhibited 99.6% of CREs at ≤8 mg/L. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam were active against 64.6%, 57.4%, and 50.7% of CRE isolates, respectively; most of the non-susceptible isolates carried metallo-beta-lactamases. Aztreonam-avibactam was active against ≥98.9% of isolates non-susceptible to these BLICs. The activity of these BLICs varied by region, with highest susceptibility rates observed in W-EU (76.9% for ceftazidime-avibactam, 72.5% for meropenem-vaborbactam, 63.8% for imipenem-relebactam) and the lowest susceptibility rates identified in the APAC region (39.9% for ceftazidime-avibactam, 37.8% for meropenem-vaborbactam, and 27.5% for imipenem-relebactam). The most common carbapenemase types overall were KPC (44.6% of CREs), NDM (29.9%), and OXA-48-like (16.0%). KPC predominated in LATAM (64.1% of CREs in the region) and W-EU (61.1%). MBL occurrence was highest in APAC (59.5% of CREs in the region), followed by LATAM (34.0%), E-EU (28.9%), and W-EU (23.6%). CONCLUSIONS: Aztreonam-avibactam demonstrated potent activity against CRE isolates resistant to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam independent of the carbapenemase produced.


Subject(s)
Aztreonam , Boronic Acids , beta-Lactamase Inhibitors , Humans , Aztreonam/pharmacology , Meropenem , beta-Lactamase Inhibitors/pharmacology , Latin America , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , Europe/epidemiology , Drug Combinations , Imipenem/pharmacology , Microbial Sensitivity Tests
3.
Antibiotics (Basel) ; 13(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927230

ABSTRACT

We evaluated the activities of aztreonam/avibactam and recently approved ß-lactamase inhibitor combinations (BLICs) to compare the antimicrobial susceptibility patterns of Enterobacterales and Pseudomonas aeruginosa isolated from intensive care unit (ICU) and non-ICU patients. Clinical isolates (1/patient) were consecutively collected from 72 United States medical centres in 2020-2022 and susceptibility tested by broth microdilution. The results for 5421 isolates from ICU patients were analysed and compared to those for 20,649 isolates from non-ICU patients. Isolates from ventilator-associated pneumonia patients were analysed separately. Aztreonam/avibactam inhibited 100.0%/>99.9% Enterobacterales and 100.0%/98.3% of carbapenem-resistant Enterobacterales (CRE) from ICU/non-ICU patients at ≤8 mg/L, respectively. The CRE susceptibility rates were 88.5%/82.9% for ceftazidime/avibactam, 82.1%/81.2% for meropenem/vaborbactam, and 78.2%/72.6% for imipenem/relebactam among ICU/non-ICU isolates. Among the P. aeruginosa isolates from ICU/non-ICU patients, the susceptibility rates were 96.3%/97.6% for ceftazidime/avibactam, 97.2/98.4% for ceftolozane/tazobactam, 97.1%/98.0% for imipenem/relebactam, 77.8%/84.6% for piperacillin/tazobactam, and 76.9%/85.8% for meropenem; aztreonam/avibactam inhibited 78.0%/81.9% of P. aeruginosa at ≤8 mg/L. In summary, lower susceptibility rates were observed among ICU than non-ICU isolates. Aztreonam/avibactam exhibited potent in vitro activity and broad-spectrum activity against Enterobacterales from ICU and non-ICU patients, including CRE and isolates non-susceptible to newer BLICs. Against P. aeruginosa, aztreonam/avibactam showed a spectrum of activity comparable to that of piperacillin/tazobactam, meropenem, and ceftazidime.

4.
Front Pediatr ; 12: 1383748, 2024.
Article in English | MEDLINE | ID: mdl-39077066

ABSTRACT

Introduction: Pneumococcal conjugate vaccines (PCVs), including higher valency vaccines such as PCV20, have the potential to reduce pediatric otitis media. We assessed serotype distribution, potential PCV coverage, and antimicrobial susceptibility of Streptococcus pneumoniae isolates cultured from middle ear fluid (MEF) of US children age ≤5 years. Methods: S. pneumoniae isolates identified from US hospitals participating in the SENTRY Antimicrobial Surveillance program from 2011 to 2021 were included. Serotypes were determined by in silico analysis based on Pneumococcal Capsular Typing methodology. The percentage of isolates belonging to serotypes included in PCV13 (serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F), PCV15 (PCV13 plus 22F, 33F), and PCV20 (PCV13 plus, 8, 10A, 11A, 12F, 15B, 22F and 33F) was calculated. Antimicrobial susceptibility testing was performed by broth microdilution and interpreted using CLSI criteria. Nonsusceptibility was defined as isolates that were intermediate or resistant to a selected antimicrobial. Results: Among the 199 S. pneumoniae isolates that were identified, 56.8% were from children age <2 years. Six serotypes accounted for around 60% of isolates: 35B (16.6%), 15B (14.6%), 15A (7.5%), 19A (7.5%), 19F (7.5%), and 3 (7.0%). Serotypes included in PCV13, PCV15, and PCV20 accounted for 23.1%, 30.2%, and 54.8% of isolates, respectively. Overall, 45.2% of isolates were penicillin non-susceptible, and 13.6% were MDR, of which 48% were serotype 19A. Seven serotypes (19A, 15A, 15B, 15C, 23A, 33F, and 35B) accounted for the majority of non-susceptible isolates. Discussion: PCVs, particularly PCV20, may prevent a substantial fraction of S. pneumoniae otitis media (OM), including OM due to non-susceptible serotypes. The addition of serotypes 15A, 23A, and 35B would improve coverage against susceptible and non-susceptible pneumococcal OM.

SELECTION OF CITATIONS
SEARCH DETAIL